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Abstract

With the rapid development of self-supervised learning (e.g., contrastive learning), the im-
portance of having large-scale images (even without annotations) for training a more gener-
alizable AI model has been widely recognized in medical image analysis. However, collecting
large-scale task-specific unannotated data at scale can be challenging for individual labs.
Existing online resources, such as digital books, publications, and search engines, provide
a new resource for obtaining large-scale images. However, published images in healthcare
(e.g., radiology and pathology) consist of a considerable amount of compound figures with
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subplots. In order to extract and separate compound figures into usable individual images
for downstream learning, we propose a simple compound figure separation (SimCFS) frame-
work without using the traditionally required detection bounding box annotations, with a
new loss function and a hard case simulation. Our technical contribution is four-fold: (1)
we introduce a simulation-based training framework that minimizes the need for resource
extensive bounding box annotations; (2) we propose a new side loss that is optimized for
compound figure separation; (3) we propose an intra-class image augmentation method
to simulate hard cases; and (4) to the best of our knowledge, this is the first study that
evaluates the efficacy of leveraging self-supervised learning with compound image separa-
tion. From the results, the proposed SimCFS achieved state-of-the-art performance on the
ImageCLEF 2016 Compound Figure Separation Database. The pretrained self-supervised
learning model using large-scale mined figures improved the accuracy of downstream image
classification tasks with a contrastive learning algorithm. The source code of SimCFS is
made publicly available at https://github.com/hrlblab/ImageSeperation.

Keywords: Compound figures, Biomedical data, Deep learning, Contrastive learning,
Self-supervised learning

1. Introduction

Self-supervised learning algorithms (e.g., contrastive learning) allow deep learning models
to learn effective image representations from large-scale unlabeled data (Celebi and Aydin,
2016; Sathya and Abraham, 2013; Chen et al., 2020). Thus, the important role of having
large-scale images (even without annotations) for training a more generalizable AI model
has been widely recognized in medical image analysis. Even unannotated medical images
can be difficult to obtain at scale for individual labs (Zhang et al., 2017). Fortunately, online
resources (e.g., NIH Open-i® (Demner-Fushman et al., 2012) search engine, academic images
released by journals) have provided a cost-effective and scalable way of obtaining large-scale
images. However, the images from such resources consist of a considerably large amount
of compound figures with subplots that cannot be directly used by modern self-supervised
learning approaches (Fig 1). To make the data useful, we need to extract individual subplots
from the compound figure, with compound figure separation algorithms (Lee and Howe,
2015b).

Recent contrastive learning methods have demonstrated advantages in pretraining a
more generalizable deep learning model using large-scale unannotated individual images.
However, the web-mined images from medical literature and search engines are not nec-
essarily single images that can be directly used for contrastive learning. Therefore, the
proposed SimCFS framework can be used to separate such compound images into individ-
ual images as unannotated training data for self-supervised learning.

Various compound figure separation approaches have been developed (Davila et al., 2020;
Lee and Howe, 2015a; Apostolova et al., 2013; Tsutsui and Crandall, 2017; Shi et al., 2019;
Jiang et al., 2021; Huang et al., 2005), especially with recent advances in deep learning.
However, previous approaches typically required resource extensive bounding box annota-
tion to form the problem as a training detection task. In this paper, we propose a simple
compound figure separation (SimCFS) framework that minimizes the need for bounding
box annotations in compound figure separation. Briefly, the contribution of this study is
four-fold:
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Figure 1: Value of compound figure separation. This figure shows the hurdle (red ar-
row) of training self-supervised machine learning algorithms directly using large-
scale biomedical image data from biomedical image databases (e.g., NIH OpenI)
and academic journals (e.g., AJKD). When searching desired tissues (e.g., search
“glomeruli”), a large amount of data are compound figures. Such data would ad-
vance medical image research via recent self-supervised learning algorithms, such
as self-supervised learning, contrasting learning, and auto encoder networks Huo
et al. (2021)

• We introduce a simulation-based training framework that minimizes the need of re-
source extensive bounding box annotations.

•We propose a new Side loss, which is an optimized detection loss for figure separation.

• We propose an intra-class image augmentation method to mimic the hard cases of
compound images without clear boundaries.

• To the best of our knowledge, this is the first study that evaluates the efficacy of
leveraging self-supervised learning with compound image separation.

We apply our technique to conduct compound figure separation for renal pathology
(in-house data) as well as on the ImageCLEF 2016 Compound Figure Separation Database
(publicly available). Glomerular phenotyping (Koziell et al., 2002) is a fundamental task for
efficient diagnosis and quantitative evaluations in renal pathology. Recently, deep learning
techniques have played increasingly important roles in renal pathology to reduce clinical
working load of pathologists and enable large-scale population based research (Gadermayr
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Figure 2: The overall workflow of the proposed simple compound figure sep-
aration (SimCFS) workflow. In the training stage, SimCFS only requires
individual images from different categories. The pseudo compound figures are
generated from the proposed augmentation simulator (SimCFS-AUG). Then, a
detection network (SimCFS-DET) is trained to perform compound figure sepa-
ration. In the testing stage (the gray panel), only the trained SimCFS-DET is
required for separating the images.

et al., 2017; Bueno et al., 2020; Govind et al., 2018; Kannan et al., 2019; Ginley et al., 2019).
Due to the lack of a publicly available dataset for renal pathology, it is appealing to extract
large-scale glomerular images from public databases (e.g., NIH Open-i® search engine) for
downstream self-supervised or semi-supervised learning (Huo et al., 2021). Meanwhile,
the Image-CLEF 2016 dataset consists of various types of organs, and resources of large-
scale medical images, which is arguably the most widely used testbed for compound image
separation tasks. Both cohorts are used to evaluate the performance of different methods.

This work is extended from our conference paper (Yao et al., 2021) with the new efforts
listed below: (1) we included more technical and evaluation details for the proposed method;
(2) More comprehensive literature review and related work have been introduced; (3) We
performed more rigorous evaluation (five-fold cross-validation) during the evaluation stages;
(4) We conducted more comprehensive evaluation with more baseline compound image
generation and separation methods (e.g., Tsutsui and Crandall (2017)); (5) We evaluated the
efficacy of leveraging self-supervised learning with compound image separation by evaluating
with both supervised and semi-supervised methods; (6) Our web mined glomerular dataset
(20,000 images), as well as the source code of SimCFS, are released to public in the paper.
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2. Related Work

2.1 Compound Figure Separation

In biomedical articles, about 40-60% of figures are multi-panel (Kalpathy-Cramer et al.,
2015). Several methods have been proposed in the document analysis community that
envolve, extracting figures and their semantic information. For example, Huang et al. (2005)
presented their recognition results of textual and graphical information in literary figures.
Davila et al. (2020) presented a survey of approaches of several data mining pipelines for
future research.

2.1.1 Traditional vision approaches

In order to collect scientific data massively and automatically, various approaches have
been proposed in the prior arts(Li et al., 2017b,a; Lee and Howe, 2015b). For example, Lee
and Howe (2015a) proposed an SVM-based binary classifier to distinguish completed charts
from visual markers, such as labels, legend, and ticks. Apostolova et al. (2013) proposed a
figure separation method via a capital index. These traditional computer vision approaches
were commonly performed on the figure’s grid-based layout. Thus, the separation was
usually accomplished by simple horizontal and vertical cuts based on the image boundary
information.

2.1.2 Deep learning Methods

In the past few years, deep learning based algorithms, especially convolutional neural net-
works (CNNs), have provided considerably superior performance in extracting and sep-
arating subplots from from compound images. Tsutsui and Crandall (2017) proposed a
CNN based approach that treated compound figure segmentation as an object localization
problem by estimating the bounding boxes of subplots. This was one of the earliest deep
learning-based approaches to achieve compound figure separation via a deep convolutional
neural network. Tsutsui et al. applied the You Only Look Once (YOLO) Version 2, a CNN
based detection network, which utilized a single convolutional network to predict bounding
boxes and class probabilities simultaneously. They also implemented training on artificially
constructed datasets and reported superior performances on ImageCLEF dataset (Garćıa
Seco de Herrera et al., 2016). Shi et al. (2019) developed a multi-branch output CNN to
predict the irregular panel layouts and provided augmented data to drive learning. Their
network separated compound figures of different sizes of structures with better accuracy.

More recently, anchor-based approaches have attracted great attentions in the object
detection field due to their concise network architectures and high computational efficiency.
The introducing of anchor has prior knowledge to object distribution which is also closer
to the compound figure situation. YOLOv4 was used by Jiang et al. (2021) to achieve a
superior detection performance. They combined a traditional vision method with high per-
formance of deep learning networks by detecting the sub-figure label and then optimizing
the feature selection process in the sub-figure detection. Now, YOLO has been updated to
V5, which inherited the advantages of YOLOv4 (Bochkovskiy et al., 2020). YOLOv5 inte-
grated spatial pyramid pooling with new data enhancement methods like Mosaic training,
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balanced model size and detection speed which achieved faster detection speed and higher
accuracy.

2.2 Self-supervised learning method

Supervised learning refers the usage of a set of input variables to predict the value of a
labeled output variable. It requires labeled data (like an answer key that the model can use
to evaluate its performance). Conversely, self-supervised learning (Celebi and Aydin, 2016)
refers to inferring underlying patterns from an unlabeled dataset without any reference to
labeled outcomes or predictions.

Recently, a new family of self-supervised representation learning, called contrastive
learning, shows its superior performance in various vision tasks (Wu et al., 2018; Noroozi
and Favaro, 2016; Zhuang et al., 2019; Hjelm et al., 2018). Learning from large-scale un-
labeled data, contrastive learning can learn discriminative features for downstream tasks.
SimCLR (Chen et al., 2020) maximizes the similarity between images in the same category
and repels the representations of different category images. Wu et al. (2018) uses an offline
dictionary to store all data representation and randomly selects training data to maximize
negative pairs. MoCo (He et al., 2020) introduces a momentum design to maintain a neg-
ative sample pool instead of an offline dictionary. Such works demand a large batch size
in order to include sufficient negative samples. To eliminate the needs of negative samples,
BYOL (Grill et al., 2020) was proposed to train a model with an asynchronous momentum
encoder. Recently, SimSiam (Chen and He, 2020) was proposed to further eliminate the
momentum encoder in BYOL, allowing for less GPU memory consumption.

3. Methods

The overall framework of SimCFS is presented in Fig. 2. The training stage of SimCFS
contains two major steps: (1) compound figure simulation, and (2) sub-figure detection. In
the training stage, the SimCFS network can be trained with either a binary (background
and sub-figure) or multi-class setting. The purpose of the compound figure simulation is
to achieve collecting large-scale training compound images in an annotation free manner.
In the testing stage, only the detection network is needed, where the output will be the
bounding boxes of the sub-figures which shall enable us to crop those images in a fully
automatic manner. The binary setting detector can serve as a compound figure separator,
while the multi-class detector can be used for web image mining for images of concerned
categories.

3.1 Anchor-based detection

YOLOv5, the latest version in the YOLO family (Bochkovskiy et al., 2020), is employed as
the backbone network for sub-figure detection. The rationale for choosing YOLOv5 is that
the sub-figures in compound figures are typically located in horizontal or vertical orders.
Herein, the grid-based design with anchor boxes is well adaptable to our application. A new
Side loss is introduced to the detection network that further optimizes the performance of
compound figure separation.
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Before Compound Tsutsui et al. 2017

Grid-based

SimCFS-AUG (ours)

Single figures

Intra-class augmentationKeep original ratio of images

With image distortion

(a)

(b)

Figure 3: Compound figure simulation. (a) The upper panel shows the previously
proposed compound figure synthesis strategy. It first generates the figure grids
and then fills with images that have undergone image distortion, which is unusual
in real compound figures. (b) The lower panel presents the proposed SimCFS-
AUG compound figure simulator. It keeps the original ratio of individual images
in an adaptive manner. Beyond this step of keeping original ratios, an intra-class
augmentation is introduced to simulate the hard cases in which the boundaries
are not explicitly visible between similar subplots. (Bounding boxes are displayed
for visualization and are not actually visible in the training data)

3.2 Compound figure simulation

Our goal is to only utilize individual images, which are non-compound images with weak
classification labels in training a compound image separation method. In previous stud-
ies, the same task typically requires stronger bounding box annotations of subplots using
real compound figures. In compound figure separation tasks, a unique advantage is that
the sub-figures are not overlapped. Moreover, their spatial distributions are more ordered
as compared with natural images in object detection. Therefore, we propose to directly
simulate compound figures from individual images as the training data for the downstream
sub-figure detection.

Tsutsui and Crandall (2017) proposed a compound figure synthesis approach (Fig. 3).
The method first randomly samples a number of rows and generates random heights for
each row. Then a random number of single figures fills the empty template. However, the
single figures are naively resized to fit the template, with large distortion (Fig. 3).

Inspired by prior arts (Tsutsui and Crandall, 2017), we propose a simple augmenta-
tion strategy that is specific to compound figure separation data, called SimCFS-AUG, to
perform compound figure simulation. The inputs of the simulator are single images with
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Algorithm 1 Compound figure simulation

Input:
Single images Xi in k classes
Set of training input indices with known labels L1, L2, ..., Lk

Output:
Compound figure Cj

Annotation file Aj

1: for each pseudo compound figure Cj do
2: Stage 1: Space initialize ▷ Multi real world case simulation
3: Layout← row-restricted or column-restricted
4: Classes← multi or intra ▷ Add intra-class augmentation
5: Number of rows/columns← n ∈ [2, 5]
6: if layout is row-restricted then ▷ Keep close to real world aspect ratio
7: WidthWCj

← 640,HeightHCj
←

∑n
p=1Hp while 3

4 ≤ aspect ratio ≤ 4
3

8: ▷ Each row’s height H1, ...Hp should be in certain range
9: else if layout is column-restricted then

10: HeightHCj
← 640,WidthWCj

←
∑n

q=1Wq while 3
4 ≤ aspect ratio ≤ 4

3
11: ▷ Each column’s width W1, ...Wq should be in certain range

12: Stage 2: Fit in preset space
13: for row/column in n do
14: if Classes is multi then
15: Create ImagePool I, for images Xi in I, i ∈ L1, L2, ..., Lk

16: else if Classes is intra then
17: Create ImagePool I, for images Xi in I, i ∈ Lm,m ∈ [1, k]

18: Random fill in resized images from ImagePool (keeping original ratio)
19: Save resized w′

i, h
′
i, center position xi, yi to Aj

20: Stage 3: Output: compound figure Cj , annotation Aj
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Figure 4: Proposed Side loss for figure separation. The upper panel shows the princi-
ple of side loss, in which penalties only apply when vertices of detected bounding
boxes are outside of true box regions. The lower left panel shows the bias of cur-
rent IoU loss towards over detection. When an under detection case (yellow box)
and an over detection case (red box) have the same margins (d), from predicted
to true boxes, the over detection has the smaller loss (larger IoU). The lower right
panel shows the under detection and over detection examples of the compound
figure separation, with the same IoU loss. Side loss is proposed to break IoU loss,
given the results in the yellow boxes are less contaminated by nearby figures than
the results in the red boxes (green arrows).

specified classes. Two groups are generated when simulating compound figures; these groups
are row-restricted and column-restricted. The length of each row or column is randomly
generated within a certain range. Then, images from our database are randomly selected
and concatenated together to fit in the preset space. As opposed to previous studies, the
original ratio of individual images is kept within our SimCFS-AUG simulator so as to mimic
more realistic common compound images without distortion in individual images.

3.3 Side loss for compound figure separation

For object detection on natural images, there is no specific preference between over detection
and under detection as objects can be randomly located and even overlapped. In medical
compound images, however,objects are typically closely attached to each other without
overlapping. In this case, over detection would introduce undesired pixels from the nearby
plots (Fig. 4), which are not ideal for downstream deep learning tasks. Unfortunately, over
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detection is often encouraged by the current Intersection Over Union (IoU) loss in object
detection (Fig. 4), as compared with under detection.

In the SimCFS-DET network, we introduce a simple side loss, which will penalize over
detection. We define a predicted bounding box as Bp and a ground truth box as Bg, with
coordinates: Bp = (xp1, y

p
1 , x

p
2, y

p
2), Bg = (xg1, y

g
1 , x

g
2, y

g
2). The over detection penalty of

vertices for each box is computed as:

xI1 = max(0, xg1 − xp1), y
I
1 = max(0, yg1 − yp1)

xI2 = max(0, xp2 − xg2), y
I
2 = max(0, yp2 − yg2)

(1)

Then, the Side loss is defined as:

Lside = xI1 + yI1 + xI2 + yI2 (2)

The side loss is combined with canonical loss functions in YOLOv5, including bounding
box loss (Lbox), object probability loss (Lobj), and classification loss (Lcls).
Ltotal = λ1Lbox + λ2Lobj + λ3Lcls + λ4Lside ,where λ1, λ2, λ3, λ4 are constant weights to
balance the four loss functions. Following YOLOv5’s implementation 1, the parameters were
set as λ1 = box× (3/nl), λ2 = obj × (imgsize/640)2 × (3/nl), λ3 = (cls× num cls/80)×
(3/nl), where num cls was the number of classes, nl was the number of layers, and imgsize
was the image size.The λ4 of the Side loss was empirically set to λ1/30 across all experiments
as the Side loss and Box loss are all based on the coordinates.

Figure 5: Qualitative Results. This figure shows the qualitative results of comparing
proposed SimCFS approach with the YOLOv5 benchmark.

1. https://github.com/ultralytics/yolov5
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4. Experimental Design

4.1 Data

We collected two in-house datasets for evaluating the performance of different compound
figure separation strategies. One compound figure dataset (called Glomeruli-2000) consisted
of 917 training and 917 testing real figure plots from the American Journal of Kidney
Diseases (AJKD), with keywords “glomerular OR glomeruli OR glomerulus”. Each figure
was annotated manually with four classes, including glomeruli from (1) light microscopy,
(2) fluorescence microscopy, (3) electron microscopy, and (4) charts/plots.

To obtain individual images to simulate compound figures, we downloaded 5,663 single
individual images from online resources. Briefly, we obtained 1,037 images from Twitter,
and obtained 4,626 images from Google search, with five classes, including individual images
from (1) glomeruli with light microscopy, (2) glomeruli with fluorescence microscopy, (3)
glomeruli with electron microscopy, (4) charts/plots, and (5) others. The individual images
were combined using the SimCFS-AUG simulator in order to generate 7,000 pseudo train-
ing images. 2,000 of the pseudo images (with multiple sub-figures) were simulated using
intra-class augmentation. In addition, 2,947 individual images were further employed as
training data. The implementation of SimCFS-DET was based on YOLOv5 with PyTorch
implementations. Google Colab was used to perform all experiments in this study.

4.2 Implement Details

In the experiment setting, the parameters are empirically chosen. We set the learning rate
to 0.01, weight decay to 0.0005 and momentum to 0.937. The input image size was set to
640, box to 0.5, obj to 1, cls to 0.5, and the number of layers to 3. For our in-house datasets,
we trained 50 epochs using a batch size of 64. For the imageCLEF2016 dataset (Garćıa
Seco de Herrera et al., 2016), we trained 50 epochs using a smaller batch size of 8.

4.3 Evaluation Metrics

Mean average precision was the primary metric used to evaluate detection performance.
For a given threshold IOU, average precision was obtained by calculating the area under
the 101-point interpolated precision-recall curve. Then, mean average precision (AP ) is the
mean of the average precision for IOU thresholds from 0.5 to 0.95 with a step size of 0.05.
AP50 is the average precision with an IOU threshold at 0.5. AP75 is the average precision
with an IOU threshold at 0.75. APS is the mean average precision for small objects (area
less than 322). APM is the mean average precision for medium objects (area between 322

and 962). Since no objects contained an area greater than 962, the large mean average
precision (APL) was not utilized.

5. Results

5.1 Ablation Study

In this ablation study, we evaluate the image separation performance via 917 real com-
pound images with manual box annotations as testing data in 1 and Fig. 5. For training,
we assessed the performance of using 917 real compound training images (“Real Training
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Table 1: The ablation study with different types of training data.

Method Training
Data

SL AUG All Light Fluo. Elec. Chart

YOLOv5 R 69.8 77.1 71.3 73.4 57.4
SimCFS-DET (ours) R ✓ 79.2 86.1 80.9 84.2 65.8

YOLOv5 S̄ 63.8 76.4 60.1 72.5 46.8
YOLOv5 S 66.4 79.3 62.1 76.1 48.0
YOLOv5 S ✓ 71.4 82.8 72.1 75.3 47.1

SimCFS (ours) S̄ ✓ 68.9 77.1 66.8 82.5 49.1
SimCFS (ours) S ✓ 69.4 77.6 67.1 84.1 48.8
SimCFS (ours) S ✓ ✓ 80.3 89.9 78.7 87.4 58.8

*The best and second best performances are denoted by bold and underline.
*For training data, R is using real compound figure while S is using simulated images, S̄ is using
Tsutsui and Crandall (2017) grid-based synthetic method.
*SL is the side loss, AUG is the intra-class self-augmentation.
*ALL is the Overall mAP0.5:.95, which is reported for all concerned classes, (light, fluorescence,
and electron microscopy).

Table 2: The results on ImageCLEF2016 dataset.

Method Backbone mAP0.5 mAP0.5:.95

Tsutsui and Crandall (2017) YOLOv2 69.8 -
Tsutsui and Crandall (2017) Transfer 77.3 -
Zou et al. (2020) ResNet152 78.4 -
Zou et al. (2020) VGG19 81.1 -
YOLOv5 (Bochkovskiy et al., 2020) YOLOv5 85.3 69.5
SimCFS-DET (ours) YOLOv5 88.9 71.2
SimCFS-DET esemble (ours) YOLOv5 90.3 71.5

Images”), as well as the performance when only using simulated training images (“Simulated
Training Images”).

From the result, the proposed Side loss consistently improves the detection performance
by a decent margin. The proposed compound image simulation method (with intra-class
self-augmentation) achieves superior performance as compared to the benchmarks.

5.2 Comparison with State-of-the-art

We also compare CFS-DET with the state-of-the-art approaches including Tsutsui and
Crandall (2017) and Zou et al. (2020) using the ImageCLEF2016 dataset (Garćıa Seco de
Herrera et al., 2016). ImageCLEF2016 is the commonly accepted benchmark for compound
figure separation, including total 8,397 annotated multi-panel figures (6,783 figures for train-
ing and 1,614 figures for testing). Table 2 shows the results of the ImageCLEF2016 dataset.
The proposed CFS-DET approach consistently outperforms other methods by considering
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evaluation metrics. Additionally, we applied five-fold cross validation to our model training
using weighted boxes fusion as proposed by (Solovyev et al., 2021). To merge the bounding
boxes results from the five predictions, the proposed method used the confidence scores of
all of the proposed bounding boxes in order to construct the average boxes. Eventually,
when combining SimCFS with the weighted boxes fusion (SimCFS-DET ensemble), the
performance was further improved.

5.3 Application on Contrastive Learning

We demonstrate the application of our SimCFS framework and how it helps to provide
massive biomedical image data and benefits further data analysis with self-supervised rep-
resentation learning.

In this study, self-supervised contrastive learning was employed as an example down-
stream task for our SimCFS compound image separation approach. We demonstrate how
our approach helps to provide massive biomedical image data and benefits further data
analysis with self-supervised representation learning. To evaluate the performance of intro-
ducing separated images, a semi-supervised method was evaluated beyond the supervised
benchmark to present the performance of using the same set of unannotated images as
the contrastive learning approach.(Table 3) Specifically, the stain and imaging modality
classification task is employed to evaluate the performance of different approaches.

5.3.1 Data

We first collected 10,000 compound figures with the keywords ‘glomerular OR glomeruli
OR glomerulus’. Then we used our SimCFS network to process all compound images to
get more than 20,000 glomeruli pathologies obtained by different microscopy or in different
stains with a confidence threshold of 0.7.

Other in-house data are 3,000 manually annotated glomeruli pathologies with seven
classes, including glomeruli from (1) electron microscopy, (2) fluorescence microscopy, and
light microscopy with different stains of (3) PAS, (4) silver, (5) H&E, (6) Masson and (7)
other.

5.3.2 Approach

We used the SimSiam network (Chen et al., 2020) as the baseline method of contrastive
learning. 20,000 glomeruli pathologies were used to train the SimSiam network. Two
random augmentations from the same image were used as training data. In all of our self-
supervised pre-training, images for model training were resized to 224 × 224 pixels. We
used the momentum SGD as the optimizer. The weight decay was set to 0.0005. The
base learning rate was lr = 0.05 and the batch size equals 64. The learning rate was
lr×BatchSize/256, which followed a cosine decay schedule (Loshchilov and Hutter, 2017).

To apply the self-supervised pre-training networks, we froze the pretrained ResNet-50
model by adding one extra linear layer which followed the global average pooling layer.
When finetuning with the 3,000 manually annotated glomeruli data, only the extra linear
layer was trained.To prevent model over-fitting, we applied 5-fold cross validation by divid-
ing our data into 5 folders, using four of the five folders as training data and the other folder
as validation. We used the SGD optimizer to train linear classifier with a based (initial)
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Table 3: Classification performance.

Methods Unlabeled
Images

labeled
Images

F1
Score

Balanced
Acc

Supervised method:
Random Int - 2.3k 0.845 0.843
ImageNet Int - 2.3k 0.888 0.883

Semi-supervised method:
Temporal Ensembling 20k 2.3k 0.892 0.885

Self-supervised method:
Simsiam - 2.3k 0.891 0.893

Simsiam w.SimCFS 20k 2.3k 0.900 0.904

*For the supervised method, we trained the entire ResNet-50 (random initialized and ImageNet
pretrained) from scratch with fully supervised learning.

learning rate lr=30, weight decay=0, momentum=0.9, and batch size=64 (follows Chen
and He (2020)). We trained linear classifiers for 100 epochs and selected the best model
based on the validation set.

5.3.3 Results

Fine-tuning our pretrained SimSiam (Backbone:ResNet-50) on 2.3K labeled images is sig-
nificantly better then training from scratch. Interestingly, our model also outperformed
ResNet-50 models pretrained on ImageNet. Table 3 shows the results.

6. Discussion

In this study, we develop a new compound image separation framework with the ultimate
goal to advance downstream machine learning tasks. The recent contrastive learning meth-
ods demonstrated their advantages of pretraining a more generalizable deep learning model
using large-scale unannotated individual images. However, the web-mined images from
medical literatures and search engines are not necessarily single images that can be directly
used for contrastive learning. Therefore, the proposed SimCFS can be used to separate such
compound images into individual images as unannotated training data for self-supervised
learning.

The YOLO method was employed since it was a broadly used anchor-based backbone
in previous compound image separation algorithms. However, our framework is an open
framework, where the YOLO method can be replaced by other object detection backbones
(e.g., anchor-free methods) and even with an even better performance.

The new application, through the optimization of both Side loss function and hard case
simulation, proposes to improve the accuracy of image separation. Our proposed Side loss is
designed based on the knowledge that there is no overlapping case in compound figures. By
adding a penalty for the overestimated bounding box, the predictions are less overlapped
as compared to the true box regions.
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Secondly, with our compound figure simulation method, SimCFS can be trained with
only synthetic compound figures which are generated by only a small quantity of annotated
individual images. At the beginning of our experiment, when we synthesized row-restricted
and column-restricted compound figures using images from all classes, the results were not
as good as the real compound image data. To overcome such issues, we proposed the
intra-class image augmentation method. By simulating those hard cases and adding the
new intra-class compound figures to our previous synthesized data, the performance of the
simulated training data has outperformed the real data by its large quantity and various
simulated cases.

Recent advances in computer vision are due, to a large extent, to the growing size of
annotated training data. However, one key limitation to the SimCFS network is that the
ImageCLEF Medical dataset , the largest available dataset for compound figure separation,
has only 7,000 images for training, which is much smaller than most modern object detec-
tion datasets. An important goal for this community could be to build up a much larger
size dataset with multi-classes annotations like MRI, pathology, and charts etc. In this
study, we assessed the promising application of SimCFS, which is to create large-scale un-
labeled images for downstream contrastive learning. Using NIH OpenI, tens of thousands
of free biomedical data can be achieved by searching the desired tissue types. The self-
supervised learning strategy achieved better accuracy than the fully supervised approach
with ImageNet initialization.

Several potential improvements for our SimCFS framework are as follows. First, we
could further introduce image synthesis approaches to the proposed pipeline to obtain more
unique imagesḞurthermore, we can perform textual contents extractions for captions, notes
and labels while separating figures. These data in multi-forms could benefit further data
mining research.

7. Conclusion

In this paper, we introduced the SimCFS framework to extract images of interests from
large-scale compounded figures with weak classification labels. The pseudo training data
were built using the proposed SimCFS-AUG simulator. The anchor-based SimCFS-DET
detection achieved state-of-the-art performance by introducing a simple side loss. Addi-
tionally, our SimCFS framework provided cost-efficient and large-scale unannotated images
to train un-/self-supervised representation learning methods (e.g., SimSiam). It achieved
better performance than ImageNet’s supervised pre-trained counterparts in classification
tasks.
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Alba Garćıa Seco de Herrera, Roger Schaer, Stefano Bromuri, and Henning Müller.
Overview of the ImageCLEF 2016 medical task. In Working Notes of CLEF 2016 (Cross
Language Evaluation Forum), September 2016.

16



Compound Figure Separation of Biomedical Images

Brandon Ginley, Brendon Lutnick, Kuang-Yu Jen, Agnes B Fogo, Sanjay Jain, Avi Rosen-
berg, Vighnesh Walavalkar, Gregory Wilding, John E Tomaszewski, Rabi Yacoub, et al.
Computational segmentation and classification of diabetic glomerulosclerosis. Journal of
the American Society of Nephrology, 30(10):1953–1967, 2019.

Darshana Govind, Brandon Ginley, Brendon Lutnick, John E Tomaszewski, and Pinaki
Sarder. Glomerular detection and segmentation from multimodal microscopy images
using a butterworth band-pass filter. In Medical Imaging 2018: Digital Pathology, volume
10581, page 1058114. International Society for Optics and Photonics, 2018.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond,
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