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Abstract

We propose neural network layers that explicitly combine frequency and image feature rep-
resentations and show that they can be used as a versatile building block for reconstruction
from frequency space data. Our work is motivated by the challenges arising in MRI acqui-
sition where the signal is a corrupted Fourier transform of the desired image. The proposed
joint learning schemes enable both correction of artifacts native to the frequency space and
manipulation of image space representations to reconstruct coherent image structures at
every layer of the network. This is in contrast to most current deep learning approaches
for image reconstruction that treat frequency and image space features separately and of-
ten operate exclusively in one of the two spaces. We demonstrate the advantages of joint
convolutional learning for a variety of tasks, including motion correction, denoising, re-
construction from undersampled acquisitions, and combined undersampling and motion
correction on simulated and real world multicoil MRI data. The joint models produce con-
sistently high quality output images across all tasks and datasets. When integrated into
a state of the art unrolled optimization network with physics-inspired data consistency
constraints for undersampled reconstruction, the proposed architectures significantly im-
prove the optimization landscape, which yields an order of magnitude reduction of training
time. This result suggests that joint representations are particularly well suited for MRI
signals in deep learning networks. Our code and pretrained models are publicly available
at https://github.com/nalinimsingh/interlacer.

1. Introduction

Magnetic resonance imaging (MRI) (Lauterbur, 1973) acquires frequency space data and
converts these measurements to images for visualization and downstream analysis. Practical
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Figure 1: Maps of correlation coefficients between a single pixel (center of circle) and all
other pixels in image (left two panels) and frequency space (right two panels) representations
of MNIST and a brain MRI dataset. All maps show strong local correlations useful for
inferring missing or corrupted data in both spaces. Frequency space correlations also display
conjugate symmetry characteristic of Fourier transforms of real images.

imaging considerations often affect the data acquisition process. For example, motion occurs
during acquisition (Andre et al., 2015), noise affects sensor readings (Macovski, 1996), and
sub-Nyquist undersampling is routinely used to speed up data acquisition (Lustig et al.,
2008). Traditionally, the acquired frequency space signals are converted to image space
reconstructions via an inverse Fourier transform, with each individual frequency space mea-
surement contributing to all output pixels in the image space. As a result, local changes
in the acquired frequency space data induce global effects on the entire output image. To
produce accurate image reconstructions, modeling tools for Fourier imaging must correct
these global artifacts in addition to performing fine-scale image space processing.

Recently, neural networks have emerged as an alternative approach for MRI reconstruc-
tion (Aggarwal et al., 2018; Hammernik et al., 2018; Hyun et al., 2018; Lee et al., 2017;
Putzky and Welling, 2019; Quan et al., 2018; Schlemper et al., 2017; Sun et al., 2016; Yang
et al., 2017; Aggarwal et al., 2018; Hammernik et al., 2018; Cheng et al., 2018; Han et al.,
2019; Zhu et al., 2018; Duffy et al., 2021; Haskell et al., 2019; Johnson and Drangova,
2019; Küstner et al., 2019; Pawar et al., 2018; Shaw et al., 2020; Oksuz et al., 2019; Us-
man et al., 2020; Benou et al., 2017; Jiang et al., 2018; Manjón and Coupe, 2018). Most
existing architectures are based on purely frequency space representations or purely image
space representations. Here, we propose and demonstrate joint frequency-image space rep-
resentations that enable networks to learn a wide set of tasks including and beyond the
extensively studied undersampled reconstruction. To motivate our approach, we examine
the correlation structure for frequency and image space representations in Fig. 1. Local
neighborhoods around a pixel exhibit strong correlations, suggesting that local convolution
operations, which are widely successful on image space computer vision tasks, might also
be useful when applied to frequency space data to capture this local structure. Convolu-
tional operations in frequency space promise to enable direct correction of local frequency
space artifacts corresponding to global image space effects, while convolutional image space
processing facilitates complementary correction of artifacts that are best captured in the
image domain.
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1.1 Prior Work

We study joint representations in the context of three corruption processes that arise during
the imaging process.

Motion. Previous retrospective motion correction strategies (Batchelor et al., 2005;
Haskell et al., 2018) are cast as large, non-convex optimization problems with iterative
solutions that are slow to compute. Deep learning methods (Duffy et al., 2021; Haskell
et al., 2019; Johnson and Drangova, 2019; Küstner et al., 2019; Pawar et al., 2018; Shaw
et al., 2020; Usman et al., 2020) solve the motion correction problem with a neural network
operating purely in the image space, even though motion artifacts are induced directly in the
frequency space during data acquisition. An alternative approach has been demonstrated
recently that detects motion directly on frequency space data, followed by motion correction
via an image space network (Oksuz et al., 2019).

Noise. Previous work on MRI denoising applies classical signal processing techniques
including filtering (Manjón et al., 2008) and wavelet-based methods (Anand and Sahambi,
2010; Nowak, 1999). Deep learning methods employ convolutional networks solely on image
space data (Benou et al., 2017; Jiang et al., 2018; Manjón and Coupe, 2018).

Undersampling. Classical undersampled reconstruction techniques either construct the
output image as a least-squares estimate from the acquired frequency space data (Pruess-
mann et al., 1999) or combine convolutional filters in the frequency space with an inverse
Fourier transform (Griswold et al., 2002; Lustig and Pauly, 2010). Many deep learning
methods apply convolutions to image space reconstructions of the acquired undersampled
frequency data (Aggarwal et al., 2018; Hammernik et al., 2018; Hyun et al., 2018; Lee
et al., 2017; Putzky and Welling, 2019; Quan et al., 2018; Schlemper et al., 2017; Sun
et al., 2016; Yang et al., 2017). To improve the quality and fidelity of the reconstruction,
the convolutional layers can be combined into an architecture that emulates unrolled opti-
mization, with a convolutional regularizer coupled with a physics-inspired data consistency
constraint that is enforced after each iteration (Aggarwal et al., 2018; Hammernik et al.,
2018). Alternatively, the convolutional architectures can act directly on the frequency space
data (Akçakaya et al., 2019; Cheng et al., 2018; Han et al., 2019). The notably different
AUTOMAP architecture uses fully-connected layers to convert frequency space data to the
image space and then applies further image space convolutions (Zhu et al., 2018), incurring
prohibitive memory complexity of O(N4) for a N ×N image.

More recently, solutions that combine frequency and image space convolutions have been
demonstrated in the context of undersampled reconstruction. One approach is to combine
separately trained pure frequency and pure image space networks into a common architec-
ture (Eo et al., 2018; Souza and Frayne, 2019; Wang et al., 2019). The most closely related
work to ours integrates frequency and image space blocks within the same network (Zhou
and Zhou, 2020), effectively implementing one of the two variants we consider in this paper.
Here we propose an additional layer architecture that also tightly couples frequency and im-
age space representations and evaluate both variants on a wide variety of tasks, well beyond
the undersampled reconstruction scenario for which the previously combined architectures
have been proposed.
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In our experiments, a basic network that simply concatenates joint layers outperforms
its pure frequency and image counterparts across a large set of artifacts and reconstruction
quality metrics. To investigate how the joint layer architecture interacts with the data con-
sistency constraints often used in undersampled reconstruction, we train the basic network
with such a constraint and observe that it compares favorably with the state of the art
task-specific undersampled reconstruction networks (Eo et al., 2018; Schlemper et al., 2017)
that also incorporate a data consistency constraint. Moreover, we probe the relationship
between the proposed joint layers and the widely used unrolled optimization architectures
by replacing image convolutional layers with our joint layers in a state of the art unrolled
optimization network, MoDL (Aggarwal et al., 2018). Using the proposed joint layers im-
proves the training landscape and reduces training time by about an order of magnitude.

To summarize, our contributions are as follows:

1. We define two task-independent convolutional layer architectures that tightly couple
frequency and image representations of an input image that can be used in conjunc-
tion with unrolled optimization, data consistency constraints, and other sophisticated
strategies for building and training reconstruction neural networks.

2. We demonstrate in simulation experiments that joint networks outperform pure im-
age or pure frequency space networks for reconstructing high quality images in the
presence of (i) extreme motion, (ii) heavy noise, and (iii) combination of artifacts,
such as motion and undersampling.

3. We demonstrate that the proposed joint learning strategy is compatible with a data
consistency constraint and performs favorably relative to state-of-the-art networks
specifically designed for the undersampled reconstruction task.

4. We demonstrate on complex-valued, multicoil, real world data that incorporating joint
layers into unrolled optimization networks results in more effective training and an or-
der of magnitude decrease of training time, suggesting that the proposed architectures
are particularly well suited for image representation in MRI reconstruction networks.

This paper is organized as follows. In the next section, we define the proposed layer
and network architectures. Section 3 provides the implementation details and describes our
ablation studies. Section 4 reports experimental results, followed by the discussion of the
proposed layers, their limitations, and conclusions in Section 5.

2. Joint Networks

MRI acquires Fourier transform measurements, referred to as k-space data. We assume a
2D multislice MRI acquisition. For each slice in this setup, the goal of image reconstruction
is to generate an image I from the acquired Fourier transform measurements F = F{I}.
Classically, this reconstruction is computed via a 2D inverse Fourier transform, producing
an estimated image Î = F−1{F}. In practice, corrupted and possibly undersampled mea-
surements F̃ are acquired instead of F , and the goal is to estimate the desired image I from
the corrupted signal F̃ . Many strategies exist for selecting which measurements to acquire in
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Î

Interleaved

IFFT

F-
C
on
v

I-C
on
v

Network
Inputs

Layer
Inputs

Layer
Outputs

Network
Outputs

IFFT IFFT IFFT

IFFT

FFT

IFFT FFT

F-
C
on
v

I-C
on
v

Figure 2: The Interleaved (left) and Alternating (right) layers, embedded within full
network architectures. Each ‘F-Conv’ or ‘I-Conv’ block applies Batch Normalization (BN),
a convolution, and an activation function in the frequency or image space, respectively.

frequency space. Here we consider Cartesian sampling, where measurement coordinates kx
and ky are evenly sampled across the 2D Fourier plane, but our method can be generalized to
other acquisition schemes. In this section, we define two neural network layer variants that
combine image and frequency space convolutional features, referred to as Interleaved and
Alternating, specify the network architectures, and describe the learning procedure.

2.1 Joint Layer Structures

Fig. 2 illustrates the layer structures of the two joint networks. We use un to denote the
frequency space input and vn to denote the image space input of layer n. Thus, u0 = F̃
and v0 = F−1 {u0} represent the frequency space and image space inputs to the network.

In the Interleaved setup, layer inputs are combined via learned, layer-specific mixing
parameters αn and βn that parameterize the sigmoid function s(x) = (1+e−x)−1 to constrain
the mixing coefficients to (0,1):

ûn = s(αn)un + (1− s(αn)) F {vn} ,
v̂n = s(βn) vn + (1− s(βn)) F−1 {un} .

(1)

Real and imaginary parts of inputs are represented as separate channels at each layer and are
joined appropriately to form complex numbers when computing the Fourier transform F {·}
or its inverse. Next, the layer applies batch normalization (BN), a convolution, and an
activation function with a skip connection to produce the outputs:

un+1 = σ(wn ~ BN(ûn) + bn) + u0,

vn+1 = σ′(w′n ~ BN(v̂n) + b′n) + v0,
(2)

where (wn, bn) are learned frequency space convolution weights and biases, (w′n, b
′
n) are

learned image space convolution weights and biases, and σ(·) and σ′(·) are activation func-
tions specific to the frequency space and image space network components, described later
in this section.

This layer architecture is a generalization of networks that operate purely in frequency
space, obtained by choosing s(αn) = 1 and s(βn) = 0, and of networks that operate purely
in image space, that arise when s(αn) = 0 and s(βn) = 1. When 0 < s(αn) < 1 and 0 <
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s(βn) < 1, this layer represents a function that cannot be expressed solely via pure image or
frequency space convolutional layers that do not invoke the Fourier transform or its inverse.
Note that the frequency output un of layer n is not required to be the Fourier transform of
the layer’s image output vn, only that the mixing is applied to either two frequency space
outputs or two image space outputs. This additional flexibility ensures that un and vn are
not entirely redundant and the network learns the right features to capture MRI structure
based on the input data and the task at hand.

In the Alternating setup, each layer sequentially incorporates frequency and image
space convolutions with the appropriate batch normalization and activation function:

vn = F−1 {σ(wn ~ BN(un) + bn) + u0} ,
un+1 = F

{
σ′(w′n ~ BN(vn) + b′n) + v0

}
,

(3)

i.e., the reconstruction alternates between convolutions in the frequency and image space.
A version of this architecture was previously introduced as part of a task-specific network
for undersampled reconstruction (Zhou and Zhou, 2020).

For both joint architectures, the frequency space convolutions represent element-wise
multiplications in the image space. Since the convolution kernels have limited width, the
learned convolutions cannot represent all such element-wise multiplications, but instead
parameterize the subset whose 2D Fourier transform is zero outside of a central region.
Coupled with nonlinearities in the frequency space, these operations enable the network to
use global, spatially varying operations not captured by image space convolutions.

Although both of these layers explicitly include the Fourier transform and its inverse,
no parameters are associated with those transforms. Thus, we learn only convolutional
weights, biases, and possibly mixing coefficients. Since our networks incorporate Fourier
transforms, they have an overall O(N2 logN) space complexity for N ×N images.

2.2 Activation Functions

Adopting the standard practice of using the ReLU nonlinearity for image data, we define
σ′(x) = ReLU(x) for all convolutions in the image space. This operation is applied sepa-
rately to real and imaginary channels of each image space convolution output (Trabelsi et
al, 2018). However, the zero-gradient of this nonlinearity for negative values is ill-suited
for networks that operate on frequency space data, as individual inputs can take on a large
range of positive and negative values. We introduce an alternative nonlinear activation
function that we apply to both the real and imaginary channels of each frequency space
convolution output:

σ(x) = x+ReLU

(
x− 1

2

)
+ReLU

(
−x+ 1

2

)
. (4)

This nonlinearity’s magnitude increases with that of the input everywhere, while preserving
the distinction between positive and negative inputs. We found that networks using this
nonlinearity consistently outperformed networks that employed ReLU activation functions
on frequency space convolution outputs.
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2.3 Learning

The networks evaluated in this paper can be trained with any differentiable loss function L.
In our experiments, we investigate a wide variety of loss functions. We train the joint
network f(·; θf , θi) for image reconstruction by optimizing a set of frequency space param-
eters θf and a set of image space parameters θi over the training dataset D = {(F̃m, Im)}
using stochastic gradient descent-based strategies to obtain

(θ∗f , θ
∗
i ) = arg min

(θf ,θi)

|D|∑
m=1

L
(
Im,F

−1
(
f(F̃m; θf , θi)

))
, (5)

where θf and θi depend on the setup of the joint layer.

3. Implementation Details and Ablation Architectures

We construct each joint network to contain 10 joint frequency and image space layers.
We performed a hyperparameter sweep and observed that the accuracy of reconstruction
on the validation set stopped improving for networks that included more than 10 joint
layers. A single 2D convolutional layer acts on the frequency space output u10 of the final
joint layer to produce the final 2-channel complex output F̂ . The estimated image Î is the
inverse Fourier transform of the network’s output, i.e., Î = F−1{F̂}. All convolution blocks
within both types of joint layers have kernel size 3x3 and 64 output features, resulting in a
total of 670,622 parameters for the Interleaved network and 706,438 parameters for the
Alternating network.

To evaluate the utility of combined frequency and image space layers as a network
building block for manipulating Fourier imaging data, we compare performance of the
Interleaved and Alternating architectures to two similarly structured baseline archi-
tectures with only frequency or only image space operations.

First, we create an architecture Frequency that performs convolutions only on frequency
space data and train the network g(·; θf) to identify frequency space parameters

θ∗f = arg min
θf

|D|∑
m=1

L
(
Im,F

−1
(
g(F̃m; θf)

))
. (6)

The network contains 20 convolution layer to match the joint networks’ 10 pairs of 2 convo-
lution layers. As in the Interleaved and Alternating networks, each convolution layer has
kernel size 3x3 and 64 output features, followed by the final, two-feature 2D convolutional
layer, resulting in 706,438 parameters. This network captures the convolution strategy used
in (Akçakaya et al., 2019; Han et al., 2019; Kim et al., 2019), which incorporate frequency
space convolutions in the context of other task-specific architectures and loss choices.

We also implement an image space network Image. The network g(·; θi) is trained by
optimizing

θ∗i = arg min
θi

|D|∑
m=1

L
(
Im, g

(
F−1

(
F̃m

)
; θi

))
. (7)

This network’s architecture is identical to that of Frequency and also contains 706,438
parameters, but it operates on image space data. This network captures the convolution
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strategy used in prior work that incorporates image space convolutions with task-specific
architectures and loss function choices, e.g., unrolled optimization and data consistency
constraints (Aggarwal et al., 2018; Hammernik et al., 2018; Haskell et al., 2019; Hyun et al.,
2018; Küstner et al., 2019; Lee et al., 2017; Manjón and Coupe, 2018; Pawar et al., 2018;
Putzky and Welling, 2019; Quan et al., 2018; Schlemper et al., 2017; Sun et al., 2016; Yang
et al., 2017).

We initialize all convolution weights using the He normal initializer (He et al., 2015) and
use the Adam optimizer (Kingma and Ba, 2014) (learning rate 0.001) until convergence.
We initialize s(α) and s(β) to 0.5. Training each model requires one day on an NVIDIA
RTX 2080 Ti GPU. Our code and pre-trained models for each of these networks is available
at https://github.com/nalinimsingh/interlacer.

4. Experiments

In this section, we evaluate the proposed joint layers in a set of experiments that progress
from simulated data and basic networks to real world complex-valued multicoil MRI mea-
surements and unrolled optimization frameworks with physics-inspired data consistency
constraints. The experiments in this section are performed on brain MRIs from multiple
datasets. Additional experiments on FastMRI single coil knee MRI, including comparisons
with the top methods on FastMRI leaderboard, are provided in Appendix A.

4.1 No Data Consistency

In this section, we present experiments where no data consistency contraint is employed
in training our networks. These experiments directly compare the performance of the
different layer types described in Sections 2 and 3. These experiments are particularly
useful for understanding the relative performance of these methods in settings where direct
data consistency may not be desirable because the acquired data is corrupted by an artifact.

Data. In this experiment, we simulate artifacts of interest in a set of 6,276 T1-weighted
brain MRI images from patients aged 55-90 collected as part of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (Mueller et al., 2005). We select the central 2D axial im-
age of each volume for training and evaluation. To simulate acquired data, we apply the
2D Fourier transform to each image. After simulating the artifacts as described below, we
normalize each input and output training pair by dividing by the maximum value in the
corrupted image. The k-space data were zero-padded in this dataset during the original
image reconstruction process, prior to our simulations. As a result, the quantitative re-
sults from these experiments do not represent model performance when deployed on raw,
acquired k-space data (Shimron et al., 2022). Instead, these experiments probe the relative
performance of competing methods on tasks for which large datasets of raw k-space are
not readily available, such as motion correction and denoising. Subsequent experiments
with raw, acquired frequency space data that have not been padded demonstrate that the
proposed joint layers can also handle non-padded data. We split the dataset into 4,115
training images, 2,061 validation images, and 100 test images such that no subjects are
shared across the training, validation, and test sets. Preliminary experiments and hyper-
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parameters are evaluated on the validation dataset; the test set is only used for computing
the performance statistics.

Training Loss and Evaluation Metric. We train Frequency, Image, Interleaved,
and Alternating networks described in Section 3 using L1 loss on the real and imaginary
components of the output and employ the SSIM scores (Wang et al., 2004) between the
ground truth and reconstructed magnitude images to evaluate the quality of reconstruction
on the test set.

4.1.1 Experimental Setup

Motion. Imaging subjects may move as measurements are being acquired at different
points in the Fourier space. In practice, all points within a single line F (·, ky) in frequency
space are acquired rapidly together. Thus, it is commonly assumed that no motion occurs
during acquisition of a single frequency space line. In this work, we use a rigid-body motion
model for motion that occurs between acquisitions of successive lines.

If the imaged subject is affected by a rotation φky about the origin, a horizontal transla-
tion ∆xky , and a vertical translation ∆yky during acquisition of line ky, the acquired signal

corresponds to the rigidly transformed image Ĩky

F̃ (·, ky) = F
{
Ĩky

}
(·, ky) , where (8)

Ĩky (x, y) = I
( (
x−∆xky

)
cosφky −

(
y −∆yky

)
sinφky ,(

x−∆xky
)

sinφky +
(
y −∆yky

)
cosφky

)
.

Eq. (8) forms a translated and rotated version of the desired image I. A pure translation
without rotation in the image space corresponds to a phase shift in the frequency space:

F̃t (kx, ky) = F (kx, ky) exp

{
−j2π

(
kx

∆xky
N

+ ky
∆yky
N

)}
(9)

for a N×N image. A pure rotation about the center of the image space without translation
corresponds to a rotation by the same angle in the frequency space:

F̃r (kx, ky) = F
(
kx cosφky − ky sinφky ,

kx sinφky + ky cosφky
)
.

(10)

To simulate motion artifacts during image acquisition as described in Eq. (8), we sample
three motion parameters at various lines in frequency space: a horizontal translation ∆x,
vertical translation ∆y, and rotation φ. We report results for the case when the fraction γm
of the total number of lines at which motion occurs is 0.03, though the trends in our results
hold for several different values of this parameter. We apply the sampled motion parameters
to contiguous lines in frequency space between consecutive motion line samples. Translation
parameter values are drawn uniformly from the range [−8px, 8px], corresponding to physical
translations on the range [−8mm, 8mm]. Rotation parameter values are drawn uniformly
from the range [−11◦, 11◦]. These parameter ranges are chosen to include extreme motion
at the upper limit of what might be expected in a typical MRI scan. For a Cartesian,
fully-sampled acquisition, the resulting combined frequency space data represents the signal
acquired when the imaging subject shifts according to the sampled motion parameters at
each of the randomly sampled lines in frequency space.

9



Noise. Noisy MRI data can be modeled via an additive i.i.d. complex Gaussian distribu-
tion:

F̃ (kx, ky) = F (kx, ky) + ε1 + jε2,

ε1, ε2 ∼ N (0, σ2IN×N ), ε1 ⊥⊥ ε2,
(11)

where N (µ,Σ) represents the Gaussian distribution with mean µ and covariance Σ. This
noise distribution gives rise to the standard Rician distribution on MRI image space pixel
magnitudes (Cárdenas-Blanco et al., 2008).

To simulate noisy acquisitions as described in Eq. (11), we sample pixelwise independent
noise from a zero-mean Gaussian distribution. We report results in the case where this
noise has standard deviation γn of 10,000, though our observed trends are consistent for
both smaller and larger values of this parameter. This value was chosen because it visually
results in an aggressive noise corruption on the magnitude image; the average resulting
magnitude image has SNR≈1.5.

Undersampling. To speed up image acquisition, a common approach is to only acquire
data at a subset Sy of discrete “lines,” i.e., values of ky ∈ Sy:

F̃ (kx, ky) =

{
F (kx, ky) ky ∈ Sy
0 ky 6∈ Sy.

(12)

We simulate undersampling as described in Eq. (12) with sampling frequency γs = 25%
(equivalent to an acceleration factor of 4), where the selected line indices Sy are sampled
at random. These lines are selected without a bias toward the low-frequency lines at the
center of the Fourier plane of each image, independently of the sampling pattern in all
other images. This challenging undersampling pattern measures how well different layer
architectures perform under non-traditional acquisition schemes, for example, when using
scan-specific acquisition patterns (Bahadir et al., 2020). Our subsequent experiments eval-
uate the proposed layers with more conventional undersampling schemes. As an aside, the
ground truth data in this experiment has conjugate symmetry in the frequency space, so
in the hypothetical case of γs=50% with our random sampling scheme it is possible that
all of the data required to perfectly reconstruct the image is present in the input. This is
impossible for the acceleration factor of γs=25% in this study.

Undersampling with Motion. Undersampling reduces scan time and thus is commonly
used to limit the time during which motion can occur. We analyze the setting where both
motion corruption and undersampling occur simultaneously (Fig. 3), forcing the reconstruc-
tion algorithms to correct both types of artifacts. As in the pure motion experiments, for
each slice, we set the fraction of lines γm = 0.03. For each line affected by motion, we sample
three parameters of motion: ∆xi, ∆yi, and φi, corresponding respectively to a horizontal
translation, vertical translation, and counterclockwise rotation about the slice origin. We
simulate the corresponding motion-corrupted frequency space as described in Eq. (8). We
then sample the full center 8% of ky-lines and sample the remainder of the line indices from
a uniform distribution to achieve an overall 4x acceleration factor.
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Figure 4: Subjectwise SSIM comparison for all brain MRI tasks without data consistency
constraints. Subjects are sorted by performance of the Interleaved network. For all tasks,
networks combining frequency and image space convolutions outperform single-domain net-
works.

4.1.2 Results

Fig. 4 reports reconstruction quality statistics for all four types of simulations described
in Section 4.1.1: motion, noise, undersampling, and motion combined with undersampling.
The Interleaved and Alternating architectures outperform the baseline architectures for
nearly every task and subject. Across all tasks and nearly all subjects, the Interleaved and
Alternating architectures are quite similar in numerical performance. Sample image re-
constructions for the motion, motion with undersampling and denoising tasks are shown
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Ground Truth Input Frequency Image Alternating Interleaved

Figure 5: Example reconstructions with motion at 3% of scanning lines, zoomed-in image
patches, difference patches between reconstructions and ground truth images, and frequency
space reconstructions. The log values are taken of the frequency space data to better vi-
sualize its dynamic range. In the patch difference, red pixels have a higher value in the
reconstruction than in the ground truth, while blue pixels have a lower value in the recon-
struction than in the ground truth. The Interleaved and Alternating architectures more
accurately eliminate the ‘shadow’ of the moved brain and the induced blurring compared
to the single-domain networks.

in Figs. 5-7. Qualitatively, for each task, the Frequency network provides a blurry version
of the ground truth image. The Image network provides a reconstruction which effectively
removes ‘background’ effects but has limited success in correcting these artifacts within
the image. In contrast, the Interleaved and Alternating networks provide sharper,
high-quality reconstructions across all tasks. Further, the frequency space reconstructions
provided by those networks appear the most faithful to the ground truth frequency data.

4.2 Hard Data Consistency Constraint

Deep learning for undersampled reconstruction is an active area of research and several
state of the art methods have emerged for this task. In this experiment, we compare
Interleaved and Alternating networks to such methods on ADNI data introduced in
Section 4.1.
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Ground Truth Input Frequency Image Alternating Interleaved

Figure 6: Example reconstructions from 4x undersampled, motion-corrupted data data,
zoomed-in image patches, difference patches between reconstructions and ground truth im-
ages, and frequency space reconstructions. As in the motion corruption and undersampling
examples, the Interleaved and Alternating architectures provide more accurate recon-
structions of the ground truth images and reconstructing a more coherent k-space.

Undersampling is fundamentally different from motion and noise corruption, because
the acquired data for lines ky ∈ Sy are the correct, desired outputs of the reconstruction
algorithm at those frequency space locations. Data consistency can be enforced at test time
and at intermediate layers of the network by substituting the appropriate k-space lines into
the k-space representations of the image (final or intermediate) produced by the network.
We enforce data consistency in Interleaved and Alternating networks by copying the
acquired frequency space data into the network output.

We compare Interleaved and Alternating networks to a U-Net (Falk et al., 2019), the
CascadeNet (Schlemper et al., 2017), which combines image space convolutions with forced
data consistency at each layer of the network, and, most similar to our method, the KIKI
network (Eo et al., 2018), which includes two separate image and frequency space networks.
The KIKI-net architecture incorporates four networks operating in the frequency, image,
frequency, and image spaces, respectively. This is in contrast to our networks, where every
layer contains convolutions in both spaces and uses a custom nonlinearity for the frequency
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Figure 7: Example reconstructions with noise of standard deviation 10,000. The
Interleaved and Alternating reconstructions remove the pixelated noise effect without
over-smoothing, in contrast to the single-domain networks.

space layers. Moreover, the KIKI-net architecture imposes a data consistency constraint
after each k-space subnetwork. For tasks other than undersampled image reconstruction,
the data consistency constraints in CascadeNet and KIKI-net would incorrectly force the
acquired k-space lines to be maintained in the final reconstruction; thus, we restrict com-
parisons with CascadeNet and KIKI-net to the undersampled reconstruction case.

We use implementations of the baseline methods available at https://github.com/

zaccharieramzi/fastmri-reproducible-benchmark (Ramzi et al., 2020). We scale each
network to have roughly 800,000 parameters for fair comparison with our joint architec-
tures. We use an L1 loss function to train the networks and SSIM scores to evaluate their
performance on the test set.

Undersampling patterns. In addition to the random sampling scheme in Section 4.1,
we simulate two traditional undersampling patterns: (i) the central 8% of lines are fully
sampled while every fourth line of the outer regions of k-space is sampled and (ii) the
central 4% of lines are fully sampled while every eighth line of the outer regions of k-space
is sampled.
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Figure 8: SSIM comparison of the joint networks with the state of the art undersampled
reconstruction approaches on ADNI data. Results are reported for three undersampling
patterns: 4x uniform undersampling with a fully-sampled central region (left), 8x uniform
undersampling with a fully-sampled central region (middle), and 4x undersampling at ran-
dom (right). In all cases, simple networks composed of repeated copies of our joint layers
perform at least as well as other state of the art networks, and in the difficult case of a
random sampling pattern, outperform the baseline networks.

4.2.1 Results

Fig. 8 reports statistics for U-Net, CascadeNet, KIKI-net, Joint and Alternating networks.
Fig. 9 provides sample image reconstructions. Interleaved and Alternating networks per-
form comparably to other state of the art methods on the simpler uniform undersampling
tasks and outperform the state of the art methods on the more complex random undersam-
pling task.

4.3 Unrolled Optimization

Finally, we evaluate the performance of the proposed joint layers in the setting of an un-
rolled optimization architecture on real world multicoil MRI data. In this experiment, we
replace the image space convolutional layers with our Interleaved layers in the MoDL
framework (Aggarwal et al., 2018) for unrolled optimization. We use the authors’ publicly
available implementation of MoDL at https://github.com/hkaggarwal/modl. Each iter-
ation of the MoDL network first passes the input through convolutional layers that serve
as a data-driven regularizer and then applies an analytical update based on the data con-
sistency term. To keep the total number of convolutions comparable, we train the baseline
MoDL network with 10 image convolutional layers in each iteration and the joint MoDL
network with 5 Interleaved layers in each iteration. We set K = 5 iterations for both
networks. The authors use the strategy of first training a one-iteration MoDL network and
using its weights to initialize the training of a multi-iteration MoDL network. This pro-
cess speeds up training of the larger unrolled optimization network and avoids instabilities.
We found that pre-training of a one-iteration model was unnecessary when using the joint
layers, and train both the one-iteration and the five-iteration joint MoDL networks using
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Figure 9: Example reconstructions from 4x undersampled data, with lines selected at ran-
dom. The Interleaved and Alternating architectures provide more accurate reconstruc-
tions of the ground truth images, better eliminating ‘ringing’ and blurring artifacts.

random initializations. For consistency with the original MoDL training approach, we train
all networks using L2 loss.

Data. We use the data from the original MoDL study (Aggarwal et al., 2018). This
dataset contains raw k-space data from 3D T2 CUBE acquisitions with Cartesian readouts
using a 12-channel head coil. The dataset contains 360 training slices from 4 training
subjects and a single, separate test subject. We exclude some edge slices in this test volume
and use the central 90 slices for our evaluations to match the training distribution. We train
all networks using a variable density 6x undersampling mask as specified in the original
paper.

4.3.1 Results

Figure 10 presents the training curves, validation SSIM, and sample reconstructions for all
versions of the MoDL architecture. All networks attain similar validation SSIM values, but
MoDL networks with joint layers achieve high reconstruction quality in roughly a third as
many epochs as image space networks. Further, using our joint layers removes the need
to pretrain a one-iteration network. The five-iteration network with joint layers trains
successfully from random initializations. The resulting differences in wall clock training
times are summarized in Table 1.
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Figure 10: Example training loss and validation SSIM curves (left) and sample recon-
structions and patches for MoDL networks with K = 1, 5 iterations trained with image
convolutional layers and with the proposed joint (Interleaved) layers. MoDL networks
with image convolutional layers do not converge if trained directly with K = 5. Instead, a
K = 1 MoDL network must be trained and used to initialize the weights of a K = 5 MoDL
network. MoDL networks trained with joint layers do not require pre-training and achieve
the same loss and validation SSIM values as networks trained with image convolutions in
significantly less time.

MoDL Layer Pre-Training (Hrs) Training (Hrs) Total (Hrs)

Image Convolution 19 12 31

Joint Layer 0 4 4

Table 1: Training times for the full (K = 5) versions of the MoDL architecture to achieve
validation SSIM≥ 0.98. For stable training, MoDL with image space convolutions must
be initialized using the weights learned for a K = 1 MoDL network. MoDL architectures
trained with our joint layers require no pre-training. In total, using joint layers results in
roughly an 8x speed-up over the pure image space approach.

5. Discussion and Conclusions

We demonstrate the advantages of joint image and frequency space learning strategies for
correcting corrupted MRI data. For tasks where data consistency constraints cannot be
readily applied, our joint networks produce sharper reconstructions than the more blurry,
artifacted versions generated by single space networks. For the well-studied task of under-
sampled reconstruction, where data consistency constraints can be imposed easily, we show
that networks comprising joint layers can be trained with such constraints and compare
favorably to other strategies that incorporate data consistency constraints to improve the
quality of single space network reconstructions. For unrolled architectures that iteratively
perform the steps of an optimization procedure to produce high quality reconstructions,
the joint layers can straightforwardly replace image convolutional layers to improve train-
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ing landscape and convergence. These results point to joint layers as a useful building block
when designing neural network architectures for correcting frequency space artifacts.

While we demonstrate our method in a diverse set of acquisition scenarios, our analysis
does not exhaustively cover all possible imaging artifacts. For example, we do not analyze
the effects of interslice motion, which may occur in addition to the intraslice motion studied
in this work and introduces new image content from an adjacent slice into the slice being
imaged. Further, while we analyze extremely aggressive versions of motion, noise, and
undersampling to demonstrate the effectiveness of our method in the most challenging
scenarios, future versions of this method could tune these parameters to more closely match
the statistics of the patient population being scanned. For example, empirically measured
motion trajectories could be used to characterize the rate and severity of the induced motion
artifacts.

In the future, we aim to develop additional strategies for applications where direct con-
sistency with acquired data is not necessarily desirable, such as motion correction. We
also plan to investigate local operations beyond convolutions that more directly capitalize
on properties and symmetries of frequency space data for use in joint architectures. Local
convolutions in the frequency space represent a subset of all possible element-wise mul-
tiplications in the image space. Thus, future work could perform these operations in the
image space, saving the computational overhead of performing an FFT within each layer, or
could take advantage of additional element-wise image space multiplications whose Fourier
transforms are not bandlimited to the size of our filter kernels. The combination of these
advances promises to significantly improve reconstruction and analysis of MRI data in the
face of widely varying acquisition challenges and downstream applications.
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Appendix A. FastMRI Experiments

We compare the Interleaved and Alternating networks with Frequency and Image base-
line methods, as well as the top three methods submitted to the single coil track of the
FastMRI challenge at https://fastmri.org.

A.1 Data

We train and evaluate all networks on the proton density knee MRI frequency space data
from the single coil FastMRI Dataset (Zbontar et al., 2018). We train separate networks
for signals acquired with and without fat suppression. We apply the FastMRI 4x under-
sampling scheme at both training and test time. The 4x undersampling scheme acquires
all of the central 8% of lines and samples lines outside of the central region from a uniform
distribution such that 25% of all lines are sampled in total. After undersampling the signals,
we normalize each input and output training pair by dividing by the maximum value in
the corrupted image. We use the standard FastMRI split of 34,742 training slices from 973
volumes and 7,135 validation slices from 199 volumes. No subjects are shared across these
sets. We treat the FastMRI validation set as our test set and use it only for evaluation by
comparing the network’s output to the high quality fully sampled images provided as part
of the FastMRI dataset.

A.2 Training Loss and Evaluation Metrics

We evaluate and compare the networks trained with a variety of loss functions and as-
sess reconstruction quality via different quality metrics. We train Frequency, Image,
Interleaved and Alternating networks with seven loss functions: image space L1 er-
ror, frequency space L1 error, a joint L1 metric summing image and frequency L1 errors,
SSIM (Wang et al., 2004), multiscale SSIM (Wang et al., 2003), and PSNR (Huynh-Thu
and Ghanbari, 2008). The joint L1 metric weighs the frequency space L1 error by 0.1
relative to the image space L1 error to account for differences in the error magnitudes.
The SSIM and multiscale SSIM scores are computed with window size 7 × 7 and con-
stants k1 = 0.01, k2 = 0.03.

We also compare the joint networks with top single coil methods on the FastMRI bench-
mark. For these experiments, we use a larger version of the Interleaved network comprised
of 6 joint layers with two frequency space and two image space convolutions per layer, yield-
ing roughly 3 million parameters total.

A.3 Results

Our results on the knee undersampled reconstruction task replicate the trends observed
in the brain undersampled reconstruction task. Joint networks outperform single-domain
networks, as reported in Table 2. This suggests that our joint layers can successfully process
acquired, complex-valued MRI data. Further, Table 2 confirms that the success of joint
learning is not specific to a certain loss landscape. Qualitative examples of reconstructions
from networks trained with various loss functions are shown in Fig. 11.

The reconstructed images produced by the larger Interleaved network are qualitatively
similar to those produced by the top three methods on the FastMRI leaderboard (Fig. 12).
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Table 3 reports reconstruction quality measures for Interleaved network and the top single-
slice methods on the FastMRI benchmark. Interleaved network achieves results that are
close to the state of the art architectures specifically tuned for this task. We emphasize
that our goal is not to attain state of the art performance on the FastMRI benchmark, but
rather to show that simple layers comprised of both frequency and image space convolutions
achieve reasonable performance on this benchmark while offering flexibility for correcting a
wide range of other artifacts, and for correcting multiple artifacts present simultaneously.
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Figure 11: Typical image reconstruction results for all architectures (rows) and loss func-
tions (columns) on FastMRI images without fat suppression. The Interleaved and
Alternating networks provide the sharpest reconstructions for all loss functions. Amongst
these, both SSIM-based loss functions most sharply reconstruct high frequency structures
within the zoomed-in patch. Similar results are observed in images with fat suppression.
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Ground Truth AIRS-Net SubtleMR i-RIM Ours

Figure 12: Comparison of the Interleaved reconstruction results with the top methods
on the FastMRI single coil knee reconstruction challenge. All images were taken from the
FastMRI online submission website. Our method produces a reconstruction qualitatively
similar to those of the top three methods on the leaderboard.

Method MAE SSIM PSNR

Interleaved (Ours) 0.0296 0.768 32.9
AIRS-Net 0.0266 0.784 33.8
SubtleMR 0.0270 0.781 33.7

i-RIM 0.0271 0.781 33.7

Table 3: Reconstruction quality statistics on the FastMRI leaderboard test dataset, at 4x
undersampling. The FastMRI dataset contains images both with and without fat suppres-
sion. Simple Interleaved network comprised of joint layers is comparable to the three top
models on the FastMRI leaderboard, yielding reconstructions with SSIM within 3% of the
leading methods.
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