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Abstract

A learning-based posterior distribution estimation method, Probabilistic Dipole Inversion
(PDI), is proposed to solve the quantitative susceptibility mapping (QSM) inverse problem
in MRI with uncertainty estimation. In PDI, a deep convolutional neural network (CNN)
is used to represent the multivariate Gaussian distribution as the approximate posterior
distribution of susceptibility given the input measured field. Such CNN is first trained
on healthy subjects via posterior density estimation, where the training dataset contains
samples from the true posterior distribution. Domain adaptations are then deployed on
patient datasets with new pathologies not included in pre-training, where PDI updates the
pre-trained CNN’s weights in an unsupervised fashion by minimizing the Kullback–Leibler
divergence between the approximate posterior distribution represented by CNN and the
true posterior distribution from the likelihood distribution of a known physical model and
pre-defined prior distribution. Based on our experiments, PDI provides additional un-
certainty estimation compared to the conventional MAP approach, while addressing the
potential issue of the pre-trained CNN when test data deviates from training. Our code is
available at https://github.com/Jinwei1209/Bayesian_QSM.

Keywords: Variational Inference, Uncertainty Estimation, Convolutional Neural Net-
work, Quantitative Susceptibility Mapping

1. Introduction

Quantitative susceptibility mapping (QSM) (de Rochefort et al., 2010) is an image contrast
in magnetic resonance imaging (MRI) to measure the underlying tissue apparent magnetic
susceptibility, which enables quantification of specific biomarkers such as iron, calcium and
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gadolinium (Wang and Liu, 2015). The forward model of QSM in three dimensional image
space is:

b “ d ˚ χ` n (1)

where χ is the tissue susceptibility, b is the measured local magnetic field, d is the spatial
dipole convolution kernel, and n is the measurement noise. Dipole convolution can also be
defined in k-space (Fourier space) as follows:

b “ FHDFχ` n (2)

where F is the Fourier transform operator and D is the point-wise multiplication operator
with the dipole kernel in k-space. The k-space formulation is more computationally efficient
because of the fast Fourier transform, so Eq. 2 is often implemented in practice. The
standard deviation (SD) of the Gaussion noise n is obtained by computing the variance of
the least squares fit of the magnetic field b from the acquired multi-echo data (Liu et al.,
2013). The problem is to recover χ from b due to the ill-posedness of the dipole kernel in
QSM (Wang and Liu, 2015; Kee et al., 2017).

Two representative methods have been proposed to solve the QSM inverse problem.
The first one is called COSMOS (calculation of susceptibility through multiple orientation
sampling) (Liu et al., 2009). COSMOS relies on multiple orientation scans to calculate the
susceptibility map with high accuracy. As a result, it has been used as the gold standard
reference when developing new QSM algorithms. However, the drawback of COSMOS is
that it requires at least three orientation scans, which is infeasible for clinical use. Another
method called MEDI (morphology enabled dipole inversion) (Liu et al., 2011b) was proposed
to solve the QSM problem with a single orientation scan. MEDI uses a morphology-related
regularization term and solves the following optimization problem:

χ̂ “ arg min
χ
||W pFHDFχ´ bq||22 ` λ||M∇χ||1 (3)

where W is derived from the observation noise covariance matrix, λ is the tunable parameter
of weighted total variation (TV) regularization (Rudin et al., 1992) with binary weighting
matrix M of susceptibility’s spatial gradients which only penalizes regions outside the brain
tissue edges in order to suppress image-space artifacts introduced by dipole inversion (Liu
et al., 2011b). Numerical optimization algorithms for solving Eq. 3 are reviewed by Kee
et al. (2017). With efficient numerical solvers, MEDI generates reasonable susceptibility
maps compared to COSMOS as a reference (Liu et al., 2011b) and requires only single
orientation scan. As a result, MEDI has been used for clinical applications in the last
decade (Wang et al., 2017; Chen et al., 2014).

From the Bayesian point of view, Eq. 3 belongs to the maximum a posteriori proba-
bility (MAP) estimation problem with the likelihood distribution defined as a multivariate
Gaussian:

ppb|χq “ N pb|FHDFχ,Σb|χq (4)

where n „ N p0,Σb|χq with Σb|χ diagonal, and the prior distribution defined as the Laplace
of the spatial gradient:

ppχq9e´λ}M∇χ}1 . (5)
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Based on Bayes’s rule, the full posterior distribution ppχ|bq given the measured local field
b can also be estimated in principle, which will quantify the uncertainty in the solutions
delivered and may have some clinical implications. In this paper, motivated by the poste-
rior distribution estimation problem in QSM and advances in deep learning based density
estimation techniques, we introduce a set of neural network parameterized distributions
to learn an approximate posterior distribution of susceptibility χ for any given b with an
adaptive training strategy. We validate our method on both healthy subjects and patients
and show good performance of the proposed method. This paper is extended from previ-
ously published work (Zhang et al., 2020b) at MIDL 2020. The additions include a detailed
methodology section, comparisons to PDI-VI0 as another baseline in Figures 2-4 and Table
1, an experiment on multiple sclerosis patients in Figure 3, amortized versus subject-specific
variational inference in Figure 5 and 6, uncertainty estimation evaluation in Figure 7, and
the discussion section.

2. Related Work

In recent years, posterior distribution estimation in imaging inverse problems has become a
new topic in medical imaging (Repetti et al., 2019; Chappell et al., 2009), in which variance
of a random variable is provided from posterior distribution to measure the uncertainty
of the solution. However, posterior distribution estimation requires a complicated or even
intractable integral from Bayes formula. Therefore, approximate inference methods are used
to reduce the computational cost and intractability of the problem. Markov chain Monte
Carlo (MCMC) (Andrieu et al., 2003) and variational inference (VI) (Bishop, 2006) are two
classes of approximate inference approaches to the Bayesian estimation problem. In MCMC,
Markov chain based sampling methods are used to generate random samples from the true
posterior distribution in order to represent an empirical distribution which resembles the
true distribution. MCMC is general in that it is able to achieve the exact inference given
infinite computational time. However, in imaging inverse problems, the computational cost
of MCMC for Bayesian estimation is often several magnitudes higher than that of the
optimization method of MAP estimation, because of the curse of dimensionality (Pereyra,
2017). In addition, convergence of the Markov chain is hard to diagnose, raising concerns
on the quality of the samples.

An alternative approach is to use VI, in which an approximate distribution is proposed
with tractable function form and unknown parameters, and an optimization algorithm is
used (for example, expectation-maximization (EM) algorithm (Blei et al., 2017)) to learn
these parameters by minimizing the divergence between the true and approximate posterior
distributions. After convergence, the approximate posterior distribution is expected to
represent the true posterior distribution. Compared to MCMC, VI is fairly efficient as the
inference problem is reduced to the optimization problem with respect to the distribution
parameters. However, VI may make the model less expressive and thus lead to suboptimal
performance. Although more complicated approximate function has a better representation
ability in some cases, it introduces higher computational cost. Such accuracy-computation
trade-off cannot be achieved easily as the inference performance depends on the tricky
design of the approximate distribution form.
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Due to advances in deep learning in the past few years, using deep neural network
as the approximate function has become a new trend in VI. This is especially true for
generative models such as variational auto-encoder (VAE) (Rezende et al., 2014; Kingma
and Welling, 2013), in which an encoder network is built to approximate the latent variable
distribution conditioned on the observed data and a decoder network is built to represent
the observed data distribution conditioned on the latent variable. In addition, because
of the generalization ability of a deep neural network with millions of trainable weights,
amortized formulation with regularization is applied on the training dataset to learn the
network weights for faster inference on the test dataset than classic VI per data, but at the
expense of lower precision (Cremer et al., 2018). As a result, this leads to a new trade-off
between inference speed and amortization accuracy.

Another topic related to posterior distribution estimation with deep learning are the deep
generative models trained with maximum likelihood, such as autoregressive (Oord et al.,
2016) and flow models (Dinh et al., 2016). In these models, neural network parameterized
models are built to deploy tractable maximum likelihood training and generate new samples
after training. If the parameterized model family is highly expressive with enough training
samples, maximum likelihood training is expected to learn parameters which fit to the true
data density well and generate new data with high fidelity. Autoregressive and flow models
differ from VAE in that exact likelihood is evaluated in the former while approximate
evaluation is applied for the latter. Such tractable inference makes training simpler but
models less expressive, except for flow models which provide a combination of tractability
and high expressiveness.

In this work, we propose to solve the posterior distribution estimation problem in QSM
using a neural network parameterized distribution family by combining posterior density
estimation from samples with posterior distribution approximation via VI for domain adap-
tation. Assuming multivariate Gaussian represented by a CNN as the posterior distribution
of susceptibility given the input local field, a COSMOS (Liu et al., 2009) dataset of field
susceptibility pairs were used as samples from the true posterior distribution to train such
CNN with an MAP loss function. Applying the likelihood in Eq. 4 and prior in Eq. 5, the
pre-trained CNN was adapted using VI posterior distribution approximation on different
patient datasets which only contained input measured fields. Compared to MAP estima-
tion MEDI (Liu et al., 2011b) in Eq. 3 and other deep learning QSM methods, QSMnet
(Yoon et al., 2018) and FINE (Zhang et al., 2020a), the proposed method estimated the
full posterior distribution of susceptibility with uncertainty quantification, while achieving
domain adaptations on various datasets.

3. Methodology

Based on the assumption that the pattern from field b to ppχ|bq is recoverable, a general
distribution pdatapχ|bq for any given b can be approximated with a learning-based approach.
To accomplish that, a set of parameterized distributions qψpχ|bq using a neural network with
parameters ψ are introduced and learned on a cohort of datasets including healthy subjects
and patients. In this work, we assume a multivariate Gaussian distribution with diagonal
covariance matrix as the approximate posterior distribution, i.e., qψpχ|bq “ N pµχ|b,Σχ|bq,
and use a dual-decoder network architecture (Figure 1) extended from 3D U-Net (Ron-
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neberger et al., 2015; Çiçek et al., 2016) to represent qψpχ|bq, with dual decoders’ outputs
representing mean µχ|b and variance Σχ|b maps.

3.1 Posterior Density Estimation

The modeling process consists of two steps. The first step employs the COSMOS dataset.
Since COSMOS provides gold standard QSM images based on multiple orientation scans,
we can treat COSMOS field-susceptibility data pairs as the samples from the true posterior
data distribution. Given the large amount of samples, they define an empirical distribution
as follows:

p̂datapχ|bq “
1

N

N
ÿ

i“1

1rχ “ χi|b “ bis (6)

where pbi, χiq is the i-th susceptibility-field data pair sampled from pdatapχ|bq with total N
samples, and 1r¨s is the indicator function. We use Kullback–Leibler (KL) divergence as
the loss function to measure the distance between the empirical distribution defined by the
COSMOS samples and the parameterized approximate distribution defined by the network,
i.e., KLrp̂datapχ|bq||qψpχ|bqs, which is equivalent to the following loss function:

KLrp̂datapχ|bq||qψpχ|bqs “
1

N

N
ÿ

i“1

´ log qψpχi|biq `Hpp̂dataq (7)

where the first term computes the expectation of negative log posterior density with respect
to the empirical distribution and the second term is the entropy of the empirical distribution.
Since the second term does not include the learnable parameters ψ, only the first term is
used during parameter learning. Notice that training using this loss function is equivalent to
maximizing the parametrized approximate posterior distribution by fitting to the dataset.
Inserting qψpχ|bq “ N pµχ|b,Σχ|bq into the first term of Eq. 7 and removing the second
term of entropy, we get the loss function of posterior density estimation with the COSMOS
dataset:

1

N

N
ÿ

i“1

´ log qψpχi|biq “
1

N

N
ÿ

i“1

1

2
pχi ´ µχ|biq

TΣ´1
χ|bi
pχi ´ µχ|biq `

1

2
ln |Σχ|bi |. (8)

We refer to qψpχ|bq trained with the COSMOS dataset as Probabilistic Dipole Inversion
(PDI).

3.2 VI Domain Adaptation

After training with the COSMOS dataset using Eq. 8 and obtaining the learned parameters
ψo, we can simply estimate ppχ|bq as qψopχ|bq given a test local field b. However, for a
new test dataset that deviate from the COSMOS training dataset such as containing a new
pathology, inferior outputs may be produced. To address this issue, qψopχ|bq can be adapted
by deploying VI on a subset of the new test dataset with only local field data needed in
the loss function. Specifically, the pre-trained approximation network qψpχ|bq with initial
weights ψo can be fine-tuned by minimizing the KL divergence between ppχ|bq and qψpχ|bq:
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KLrqψpχ|bq||ppχ|bqs

“ Eqrlog qψpχ|bq ´ log ppχ|bqs

“ Eqrlog qψpχ|bq ´ log ppχ, bqs ` log ppbq

“ KLrqψpχ|bq||ppχqs ´ Eqrlog ppb|χqs

(9)

where the first term in the last equation imposes the approximate posterior to be similar
to the prior, which works as the regularization term for training, and the second term
encourages data consistency in the likelihood with the QSM foward model. Constant term
log ppbq is omitted in the last equation. Inserting the prior distribution in Eq. 5 and
likelihood distribution in Eq. 4, the KL divergence in Eq. 9 becomes:

KLrqψpχ|bq||ppχ|bqs

“ ´
1

2
ln|Σχ|b| `

1

2K

K
ÿ

k“1

λ}M∇χk}1 `
1

2K

K
ÿ

k“1

pFHDFχk ´ bq
TΣ´1

b|χpF
HDFχk ´ bq

(10)

where ´1
2 ln|Σχ|b| is derived from the entropy of qψpχ|bq in KLrqψpχ|bq||ppχqs, ´Eqrln ppχqs

and ´Eqrlog ppb|χqs are approximated through Monte Carlo (MC) sampling with K sam-
ples χ1ks from qψpχ|bq. The reparameterization strategy can be used to implement back-
propagation (Kingma and Welling, 2013), where samples from the standard Normal dis-
tribution were used to generate samples from the predicted susceptibility distribution by
scaling and translating operations, in order to make the predicted susceptibility mean and
variance map learnable through back-propagation. In VI domain adaptation, Eq. 10 is min-
imized across the new subjects. Once trained, the adapted qψpχ|bq can be used to predict
µχ|b and Σχ|b for new test subject directly, which is the so-called amortized VI. We refer to
the fine-tuned approximate distribution with Eq. 10 as PDI-VI. Amortized VI can also be
deployed without any COSMOS pre-training, in which only the target dataset with single
orientation local field maps are needed to learn the probabilistic dipole inversion network
using Eq. 10. We refer to amortized VI without COSMOS pre-training as PDI-VI0.

The amortized formulation of VI in Eq. 10 achieves fast inference during test time com-
pared to the classic VI per case, but potentially at the expense of suboptimal performance
(Cremer et al., 2018). This inference suboptimality can be explained as the inference gap,
which can be decomposed as follows:

KLrqψ˚pχ|bq||ppχ|bqs
loooooooooooomoooooooooooon

Approximation gap

` KLrqψpχ|bq||ppχ|bqs ´ KLrqψ˚pχ|bq||ppχ|bqs
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

Amortization gap

(11)

where ψ and ψ˚ are obtained by amortized and subject-specific VIs of Eq. 10. As a result,
KLrqψpχ|bq||ppχ|bqs is decomposed into the two terms above: the approximation gap and the
amortization gap. The approximation gap is determined by the capacity of the parameter-
ized model family qψpχ|bq to approximate the true posterior distribution. The amortization
gap is determined by the ability of the learned variational parameters ψ to generalize to a
new test case. Initialized with the pre-trained PDI from Eq. 8, we deployed and compared
both amortized and subject-specific VI for QSM posterior distribution estimation.
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Figure 1: The network architecture of the proposed method. Two upsampling paths’ out-
puts represent mean and variance maps of susceptibility. The COSMOS dataset
was used to perform posterior density estimation in Eq. 9. Domain adaptation
VI with MC sampling in Eq. 10 were applied on other datasets.

3.3 Relation to VAE

The proposed VI domain adaptation strategy in Eq. 9 resembles the unsupervised varia-
tional auto-encoder (Kingma and Welling, 2013). In VAE, the auto-encoder architecture is
used to learn both the approximate inference network as the encoder for the latent space
variable z conditioned on the input data x, and the generative network as the decoder of
data x given samples of z. x is expected to be reconstructed from z. Evidence lower bound
(ELBO) is used to approximate the log density of data x by training the encoder and de-
coder simultaneously, where the optimal encoder of ELBO is the true posterior distribution
of z given x, at which point the ELBO is tight and equals the log density of data x.

In the proposed PDI-VI strategy for QSM, the approximate posterior distribution is also
a neural network ”encoder” from the input field b to the ”latent” susceptibility χ, whereas
the ”decoder” is no longer a neural network and does not need to be trained. Instead, this
”decoder” is the likelihood distribution from the forward dipole convolution model with
additive Gaussian noise in Eq. 4. In addition, the prior distribution of the ”latent” variable
χ in Eq. 5 also comes from the domain knowledge of solving the QSM inverse problem.
From physics-based likelihood and prior distributions, the same ELBO loss function in Eq. 9
is applied. Therefore, the proposed PDI-VI combines the modeling principle of distribution
approximation and learning in VAE with the domain knowledge from medical physics in
QSM.
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Figure 2: Reconstructions (first row, [-0.15, 0.15] ppm) and absolute error maps (second
row, [0, 0.05] ppm) of one COSMOS test subject in one orientation, with COS-
MOS as the gold standard. FINE achieved the lowest reconstruction error, while
the other methods had comparable results. SD maps of PDI, PDI-VI0 and PDI-
VI (third row, [0, 0.05] ppm) showed high uncertainties at the sagittal sinus and
globus pallidus, which was consistent with their error maps.

Table 1: Average quantitative metrics of 10 test COSMOS brains reconstructed by differ-
ent methods. FINE gave the best reconstruction at the expense of significantly
increased computational time. The other methods had comparable results.

pSNR (Ò) RMSE (Ó) SSIM (Ò) HFEN (Ó) GPU time (s)

MEDI (Liu et al., 2012) 46.39 41.16 0.9569 31.30 17.54
QSMnet (Yoon et al., 2018) 46.35 41.29 0.9705 43.31 0.60
FINE (Zhang et al., 2020a) 48.12 33.66 0.9789 31.97 65.42

PDI (Eq. 8) 47.77 35.08 0.9772 35.17 0.61
PDI-VI0 (Eq. 10) 46.05 42.74 0.9704 42.27 0.61

PDI-VI (Eq. 8, then Eq. 10) 46.31 41.51 0.9707 40.58 0.61

3.4 Network Architecture

The proposed network architecture of qψpχ|bq is shown in Figure 1. This network is inspired
by the widely used U-Net architecture (Ronneberger et al., 2015; Çiçek et al., 2016) for
image-to-image mapping tasks in the biomedical deep learning field. The extension of the
proposed architecture is to have one downsampling and two upsampling paths, where each
upsampling path generates the mean or variance map from the same compressed feature
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MEDI FINE PDI (𝜇!|# )QSMnet PDI-VI0 (𝜇!|# ) PDI-VI (𝜇!|# ) PDI-VI ( Σ!|# )PDI-VI0 ( Σ!|# )PDI ( Σ!|# )
su

b1
su

b2

Figure 3: Two MS patient reconstructions (first six columns, [-0.15, 0.15] ppm) and SD
maps (last three columns, [0, 0.05] ppm). Lesions indicated by the red arrows
near the ventricle had lower susceptibility values in QSMnet and PDI, but were
recovered in FINE and PDI-VI. Compared to PDI-VI, lesions reconstructed by
PDI-VI0 also had lower susceptibility.

maps. Skip concatenations between downsampling and upsampling are applied for spatial
information sharing and better gradient back-propagation. Loss functions in Eqs. 8 and
10 are used for training on COSMOS and other datasets. For the loss function in Eq.
10, Monte Carlo sampling with reparameterization strategy is applied to stochastically
optimize qψpχ|bq. The 3D convolutional kernel size is 3ˆ 3ˆ 3. The numbers of filters from
the highest feature level to the lowest are 32, 64, 128, 256 and 512. Batch normalization
(Ioffe and Szegedy, 2015) after each convolutional layer, and max pooling operation for
downsampling and deconvolutional operation for upsampling are used.

4. Experiments

4.1 Data Acquisition and Preprocessing

MRI was performed on 7 healthy subjects with 5 brain orientations using a 3T scanner
(GE, Waukesha, WI) equipped with a multi-echo 3D gradient echo (GRE) sequence. The
acquisition matrix was 256ˆ256ˆ48 and voxel size was 1ˆ1ˆ3 mm3. The input local tissue
field data b was generated by sequentially deploying non-linear fitting across multi-echo
phase data (Kressler et al., 2009), graph-cut based phase unwrapping (Dong et al., 2014) and
background field removal (Liu et al., 2011a). A reference QSM reconstruction was obtained
using COSMOS (Liu et al., 2011b). Two other datasets were obtained by performing
single orientation GRE MRI on 9 patients with multiple sclerosis (MS) and 7 patients with
intracerebral hemorrhage (ICH), which were acquired using the same scanning parameters
and image processing procedures as above, except for the COSMOS reconstruction step.
Data were acquired following an IRB approved protocol.

For the COSMOS dataset, data from 4/1 subjects (20/5 brain volumes) were used
as the training/validation dataset, with augmentation by in-plane rotation of ˘15˝. The
brain volume data in the training and validation dataset was divided into 3D patches with
patch size 64 ˆ 64 ˆ 32 and extraction step 21 ˆ 21 ˆ 11, generating 9659{2874 patches

9
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MEDI FINEQSMnet
su

b1
su

b2
PDI (𝜇!|#) PDI-VI0 (𝜇!|#) PDI-VI (𝜇!|#) PDI ( Σ!|$)

)
PDI-VI0 ( Σ!|$)
)

PDI-VI ( Σ!|$)
)

Figure 4: Two ICH patient Reconstructions (first six columns, [-0.15, 0.15] ppm) with the
insets ([-0.6, 1.5] ppm) and SD maps (last three columns, [0, 0.05] ppm). Hemor-
rhage susceptibility was lower on QSMnet and PDI as compared to MEDI. This
issue was reduced in FINE and PDI-VI. PDI-VI0 gave comparable hemorrhage
reconstructions to PDI-VI. High variance inside the hemorrhage was consistent
with high measured noise in the same region.

for training/validation. Data from the remaining 2 subjects (10 brain volumes in total)
were used for testing. For the MS patient dataset, data from 6/1 subjects were used as the
training/validation dataset and data from the remaining 2 subjects were used for testing.
For the ICH patient dataset, data from 4/1 subjects were used as the training/validation
dataset and data from the remaining 2 subjects were used for testing.

4.2 Implementation Details

The loss function in Eq. 8 was applied for posterior density estimation on the COSMOS
dataset with Adam optimizer (Kingma and Ba, 2014) (learning rate: 10´3, Number of
epochs: 60), yielding a trained network qψopχ|bq, denoted as PDI. Initialized with ψo, VI
domain adaptations using the loss function in Eq. 10 were deployed on both MS and ICH
datasets with Adam optimizer (learning rate: 10´3, Number of epochs: 100), denoted as
PDI-VI. VIs using Eq. 10 and without ψo initialization were also performed and compared
for all datasets (Adam learning rate: 10´3, Number of epochs: 100), denoted as PDI-VI0.
MC sampling size K in VI was chosen as 5 due to limited GPU memory. The hyper-
parameter λ in Eq. 10 was chosen as 20 to balance the streaking artifact suppression and
over-smoothing effect of TV regularization. While training and validation were implemented
using 3D patches, whole brain volumes were fed into the network during COSMOS testing
and all VI experiments. We implemented the proposed method using PyTorch (Python 3.6)
on an RTX 2080Ti GPU.

4.3 COSMOS Dataset

For the COSMOS test dataset, we compared PDI (Eq. 8), PDI-VI0 (Eq. 10 without PDI
pre-training) and PDI-VI (Eq. 10 with PDI pre-training) to MAP estimation MEDI (Liu

10
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$/&

Figure 5: (a) Reconstructions ([-0.15, 0.15] ppm) with the insets ([-0.6, 1.5] ppm) and SD
maps ([0, 0.05] ppm) and (b) KL divergence values of two ICH test patients using
amortized and subject-specific VIs. MEDI and FINE with TV were used for
comparison. Although an almost zero amortization gap (Eq. 11) was achieved by
amortized VI (b) for both cases, reconstruction quality at the hemorrhage center
and surrounding hemorrhage was still marginally better for subject-specific VI.
FINE with TV and subject-specific VI achieve comparably image quality.

et al., 2012) and two deep learning reconstructions QSMnet (Yoon et al., 2018) and FINE
(Zhang et al., 2020a). Reconstruction maps of one orientation from one test subject are
shown in Figure 2. Quantitative metrics of each reconstruction method averaged among 10
test brains are shown in Table 1. FINE gave the best overall quantitative results with the
expense of significantly increased computational time. The other methods had comparable
results. All deep learning methods achieved fast inference time on GPU except FINE. In
Figure 2, error maps of PDI, PDI-VI0 and PDI-VI’s mean outputs µχ|b matched their SD
outputs

a

Σχ|b, with high uncertainty/error located at the sagittal sinus and globus pallidus.
The SD output of PDI-VI0 and PDI-VI were sharper than PDI with lower white-grey matter
variation.

4.4 Patient Datasets

The reconstruction maps of two MS patients in the test dataset are shown in Figure 3.
Lesions indicated by the red arrows had susceptibility values lower in QSMnet and PDI
than in MEDI, but were recovered in FINE and PDI-VI. Compared to PDI-VI, lesions
reconstructed by PDI-VI0 also had lower susceptibility, which qualitatively indicated the
advantage of the COSMOS dataset pre-training for PDI-VI.

The QSMs for two ICH patients in the test dataset are shown in Figure 4. Compared
to MEDI and FINE which had hyperintensity inside the hemorrhage, both QSMnet and
PDI had lower susceptibility inside this region, which might result from the fact that such
pathology was not encountered during training. After amortized VI domain adaptation, sus-
ceptibility value inside the hemorrhage was recovered in PDI-VI. Shadow artifacts surround-
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Figure 6: Value changes of three individual terms in Eq. 10 of subject-specific VI during
iterations, with the value of amortized VI as a reference. The second term of TV
regularization was slightly lower in subject-specific VI after convergence, while
the other two terms were similar between amortized and subject-specific VIs.

ing the hemorrhage were also reduced in PDI-VI from PDI. PDI-VI0 yielded hemorrhage
reconstructions that were comparable to PDI-VI. High SD map inside the reconstructed
hemorrhage as shown in the last three columns of Figure 4 implied high reconstruction
uncertainty of this region.

4.5 Amortized vs Subject-specific VI

The inference gap in Eq. 11 was investigated on two ICH test cases shown in Figure 5, where
subject-specific VI using Eq. 10 initialized from the weights of PDI was deployed with 100
iterations for convergence. MAP estimations in Eq. 3 of iterative reconstruction MEDI
and network parametrized reconstruction FINE with TV (λ “ 20, 100 iterations) were
also delpoyed for comparison. As demonstrated in Figure 5a, both amortized and subject-
specific VIs recovered the susceptibility value inside the hemorrhage from PDI in Figure 4.
Compared to amortized VI, the susceptibility values at the center of hemorrhage (insets in
Figure 5a) were further recovered and shadow artifacts surrounding the hemorrhage (red
arrows in Figure 5) were reduced in subject-specific VI. In addition, subject-specific VI had
similar reconstructions to MEDI and FINE with TV for both test cases, which confirmed
that the mean susceptibility map by subject-specific VI equals the MAP susceptibility maps
by MEDI and FINE with TV. Figure 5b shows that KL divergence of Eq. 10 during subject-
specific VIs converged to the value of amortized VIs with almost zero amortization gap (Eq.
11). Figure 6 shows the value changes of three individual terms in Eq. 10 during subject-
specific VI iterations, where the second term ( 1

2K

řK
k“1 λ}M∇χk}1) was slightly lower on
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SD map (PDI)SD map (PDI-VI)Average absolute error (PDI-VI) Average absolute error (PDI)
a)

Average absolute error (PDI-VI) Average absolute error (PDI)
b)

SD map (PDI-VI) SD map (PDI)

Figure 7: PDI and PDI-VI’s average absolute error maps (first two columns, [0, 0.05] ppm)
through simulations and predicted SD maps (last two columns, [0, 0.05] ppm) of
(a) healthy and (b) hemorrhagic brains. The SD maps resembled the error maps
in both cases for PDI and PDI-VI.

average than the one of amortized VI for both test cases, which might contribute to the
improvement of shadow artifact reduction.

4.6 Uncertainty Map Evaluation

To evaluate uncertainty estimation performance of the predicted SD map, absolute er-
ror maps of PDI and PDI-VI’s mean predictions to the ground truth susceptibilities were
computed via simulation, then correlation between susceptibility SD and error maps was
examined. Local field inputs were simulated from (a) COSMOS test data in Figure 2 and
(b) FINE reconstruction of the ICH patient in Figure 4a through multi-echo data synthe-
sization with additive noise, nonlinear field fitting and phase unwrapping. Details of the
simulation steps are shown in Appendix A. Such simulation was repeated 100 times to gen-
erate 100 local fields as inputs to PDI and PDI-VI. 100 mean maps of PDI and PDI-VI were
predicted accordingly to compute the average absolute errors. Figure 7 shows the average
absolute error maps and predicted SD maps of PDI and PDI-VI. In Figure 7a, large errors
in the cerebral veins and sagittal sinus were reflected in the predicted SD maps for both
PDI and PDI-VI, while in Figure 7b, large errors in the hemorrhage were also predicted in
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PDI and PDI-VI’s SD maps, which demonstrates good correlation between the error map
and the predicted SD map of the proposed method for uncertainty estimation.

5. Discussion

The adaptive learning strategy proposed in this paper tackles the domain adaptation chal-
lenge in medical imaging with deep learning from a probabilistic distribution refinement
point of view. Since the high quality COSMOS samples are acquired only from healthy
subjects, posterior density estimation with COSMOS samples may not generalize well to
the patients with pathology not covered by the COSMOS dataset. As a result, even though
the COSMOS pre-trained PDI performs well on COSMOS test dataset from the same dis-
tribution (Figure 2), inferior mapping happens evidenced by lower susceptibility values for
lesions when applying PDI to the patients directly (Figures 3 and 4). Based on the dis-
tribution approximation principle, the pre-trained density estimation network PDI needs
fine-tuning in order to fit to the patient data distribution as well. VI with KL divergence
as a measure of similarity between two distributions is used for approximate distribution
refinement, which helps reduce the generalization error of PDI (Figure 3 and 4). However,
in terms of other domain generalizations such as different imaging resolutions, PDI-VI with
KL divergence loss function for weight adjustment has not been tested and may suffer in
accuracy, which will be explored in the future work. Another domain adaptation method
FINE works better than PDI-VI (Figure 4) to reduce generalization error of the pre-trained
network, since FINE fits to every test case by minimizing the fidelity loss, which has the
major drawback of significantly increased computational time (Table 1).

The relationship between PDI-VI (Eq. 9) and VAE (Kingma and Welling, 2013) is
described in the methods section. The key point is that the generative network (the decoder)
from latent variable to data in VAE is replaced by a physics-based likelihood model (Eq.
4) in PDI-VI. This implies a general way of learning the posterior distribution of image
data conditioned on the measured signal for any imaging modality, where a specific forward
imaging model is used to form the ”decoder” and only the ”encoder” is learned with input
measured signals in an unsupervised fashion like VAE. The training strategy of PDI-VI
utilizes both widely available measured signals in clinic and well-defined imaging physical
models to improve the reconstruction fidelity of the trained model. When gold standard
reconstructions are available for training, as in the COSMOS dataset, combining direct
conditional density estimation using high quality images with VI domain adaptation on
measured input signals could improve the performance of VI trained on the measured signals
alone (Figure 3).

PDI defines a set of parameterized distributions using a neural network and learns these
parameters from samples to approximate the true distribution, where the expressiveness of
the distribution family affects their approximation ability. The network architecture (Fig-
ure 1) is inspired by 3D U-Net (Ronneberger et al., 2015; Çiçek et al., 2016), which was
originally proposed for medical image segmentation tasks and has also been successfully
used in deep QSM reconstructions (Yoon et al., 2018; Zhang et al., 2020a; Bollmann et al.,
2019), therefore such architecture should be expressive enough for field-to-susceptibility
mapping. The COSMOS experiment indicates satisfactory image-to-image mapping ability
of the proposed architecture (Figure 2 and Table 1). The simulation experiment verifies
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correlation between the predicted SD map and the error map, indicating reasonable un-
certainty quantification of PDI and PDI-VI. Despite such merits, the choice of variational
posterior form in this work is simply a Gaussian distribution with diagonal covariance ma-
trix, which is known as the mean field approximation for modeling and calculation simplicity
in classic VI. This factorized Gaussian does not consider correlation between voxels in the
reconstructed susceptibility map, but in view of the forward convolution operation (Eq. 1)
which aggregates the global susceptibility into the measured field at each location, taking
into account the dependency between local voxels in the susceptibility map may make the
variational posterior more expressive. Possible options could be improving the Gaussian
posterior with a non-diagonal covariance matrix and using an autoregressive (Oord et al.,
2016) or flow-based (Dinh et al., 2016) model to capture the dependency.

The prior distribution of susceptibility (Eq. 5) used in PDI-VI comes from MEDI (Liu
et al., 2011b), where weighted TV regularization was used to suppress streaking artifacts
appeared on QSM dipole inversion (Kee et al., 2017). In general, the prior distribution ppxq
captures the density of data x from a prior knowledge, where higher quality data x has a
higher density value. In this sense, estimating the density from sufficient data may build
a more comprehensive prior distribution and therefore become more efficient to regularize
the inverse problem solution. In fact, learning the prior density for MAP estimation of the
imaging inverse problem has been explored by Tezcan et al. (2018) and Luo et al. (2019),
where VAE and PixelCNN++ (Salimans et al., 2017) were deployed to learn the explicit
prior distribution of MR images. Lønning et al. (2019) proposed the recurrent inference
machine by implicitly encoding the prior distribution for MAP estimation. These deep
prior approaches inspire us to extend our work in the future by learning and evaluating a
prior density from data and inserting them into Eqs. 9 and 10 for VI.

The inference gap (Eq. 11) summarizes two types of errors when applying the amortized
inference strategy. Amortized VI has the advantage of fast inference during test time.
However, it has slightly worse visual quality inside and surrounding the hemorrhage than
subject-specific VI (Figure 5a). Even though an almost zero amortization gap was achieved
(Figure 5b), the regularization term of KL divergence (Eq. 10) was still better imposed in
subject-specific VI, which may contribute to its better reconstruction of the hemorrhage.
However, such advantage comes at a cost of extra inference time. To accelerate the inference
speed of subject-specific VI, optimizing the initialization of variational parameters is useful
to reduce the number of VI optimization steps. Meta-learning (Naik and Mammone, 1992;
Hochreiter et al., 2001) may be applied to optimize the optimization process of VI per data,
where a learner can be designed during pre-training to learn an inference algorithm that
generalizes well to the data of interest.

6. Conclusion

In conclusion, we demonstrate a neural network parametrized distribution which yields an
approximate posterior distribution of susceptibility given an input local field map for the
Bayesian QSM inverse problem. The network was pre-trained on a COSMOS dataset by
fitting to the empirical distribution and adapted to different domains using amortized VI.
The proposed method computes adaptive reconstructions of susceptibility together with
an uncertainty estimation. Future work will include building a more expressive posterior
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distribution family, learning a deep prior density for regularization and optimizing the
subject-specific VI algorithm using meta-learning.
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Appendix A.

In this appendix we show the steps of simulation in section 4.6:

• Synthesize local magnetic field data bsyn from COSMOS gold standard susceptibility
χCOSMOS using dipole convolution model:

bsyn “ χCOSMOS ˚ d

• Synthesize multi-echo MR images Sj from bsyn (above), R2˚ (T2˚ decay rate) and M0

(water) using forward physical model:

Sj “M0e
´R2˚¨tjeipφ0`bsyn¨tjq ` nj ,

where tj is the echo time of the j-th echo, nj is the i.i.d. Gaussian noise on real and
imag parts for all voxels and initial phase φ0 “ 0 is assumed for all voxels.

• Deploy nonlinear field fitting and spatial phase unwrapping to estimate the noisy local
field data.
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