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Abstract

Uncertainty assessment has gained rapid interest in medical image analysis. A popular
technique to compute epistemic uncertainty is the Monte-Carlo (MC) dropout technique.
From a network with MC dropout and a single input, multiple outputs can be sampled.
Various methods can be used to obtain epistemic uncertainty maps from those multiple
outputs. In the case of multi-class segmentation, the number of methods is even larger as
epistemic uncertainty can be computed voxelwise per class or voxelwise per image.

This paper highlights a systematic approach to define and quantitatively compare those
methods in two different contexts: class-specific epistemic uncertainty maps (one value per
image, voxel and class) and combined epistemic uncertainty maps (one value per image and
voxel). We applied this quantitative analysis to a multi-class segmentation of the carotid
artery lumen and vessel wall, on a multi-center, multi-scanner, multi-sequence dataset of
Magnetic Resonance (MR) images. We validated our analysis over 144 sets of hyperparam-
eters of a model.

Our main analysis considers the relationship between the order of the voxels sorted
according to their epistemic uncertainty values and the misclassification of the prediction.
Under this consideration, the comparison of combined uncertainty maps reveals that the
multi-class entropy and the multi-class mutual information statistically out-perform the
other combined uncertainty maps under study (the averaged entropy, the averaged variance,
the similarity Bhattacharya coefficient and the similarity Kullback-Leibler divergence). In
a class-specific scenario, the one-versus-all entropy statistically out-performs the class-wise
entropy, the class-wise variance and the one versus all mutual information. The class-
wise entropy statistically out-performs the other class-specific uncertainty maps in term of
calibration. We made a python package available to reproduce our analysis on different
data and tasks.
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1. Introduction

Deep learning has become an important asset in medical image segmentation due to its good
performance (Taghanaki et al., 2021). However, a major obstacle to its application in clinical
practice is the lack of uncertainty assessment; without this it is impossible to know how
trustworthy the prediction of a deep learning algorithm is. Kiureghian and Ditlevsen (2009)
discriminates uncertainty into: epistemic uncertainty and aleatoric uncertainty. Epistemic
uncertainty is inherent to the model and decreases with an increased amount of data, while
aleatoric uncertainty is inherent to the input data. In clinical practice, epistemic uncertainty
would indicate the degree of uncertainty of the algorithm regarding its prediction, and the
aleatoric uncertainty of the algorithm regarding the quality of the input data (for example:
artefacts, blurring...).

Bayesian deep learning provides a mathematically grounded answer to epistemic uncer-
tainty assessment and was therefore investigated since the rise of computer vision (MacKay,
1992; Denker and LeCun, 1991; Neal, 1993). These methods allow epistemic uncertainty
assessment since the neurons of a Bayesian neural network contain distributions instead
of scalars (distributions from which it is possible to extract uncertainties). However early
methods substantially increased the time and space complexity of those algorithms com-
pared to their non-Bayesian counterparts. The work of Gal and Ghahramani (2016) renewed
the interest for the field as they developed the MC dropout framework: a form of Bayesian
inference that requires only a slight alteration of the current state of the art models and
conserves the time complexity of standard approaches.

For segmentation tasks, uncertainty assessment can be expressed in the form of un-
certainty maps specifying the uncertainty for each voxel of a given image. Nair et al.
(2020) analysed both aleatoric and epistemic uncertainty maps in a single-class segmenta-
tion task:segmenting brain lesion on MR images. Considering each class separately, Mehta
et al. (2020) developed a performance measure to compare different uncertainty quantifica-
tion methods on a multi-class segmentation task. However, a multi-class segmentation task
provide a larger set of epistemic uncertainty maps than a single-class segmentation task as
it is possible to compute combined epistemic uncertainty maps (one uncertainty map per
voxel, per image) or class-specific epistemic uncertainty maps (one uncertainty map per
class, per voxel, per image). Both options are clinically relevant as the combined epistemic
uncertainty maps provide a summary of an uncertainty of the algorithm of all the seg-
mented classes simultaneously where a class-specific epistemic uncertainty maps considers
the segmented classes separately. For both combined epistemic uncertainty maps and class-
specific epistemic uncertainty maps many design choice are possible,however there is limited
research focusses on analysing the extra options resulting from the multi-class setting.

Carotid atherosclerosis, corresponding to the thickening of the vessel wall of the carotid
artery, is one of the most important risk factor for ischemic stroke (World Health Organiza-
tion, 2011), which in turn is an important cause of death and disability worldwide (World
Health Organization, 2014). Carotid atherosclerosis can be visualized in vivo through non-
invasive modalities such as Ultrasound, Computed Tomography or Magnetic Resonance
Imaging and can be assessed measuring the degree of stenosis (ratio of the diameter of the
vessel wall and of the diameter of the lumen). This measurement can be obtained from
the segmentation of the lumen and vessel wall of the carotid artery. Therefore a trustwor-
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thy segmentation of the carotid artery is an important step towards early detection of an
increased risk of ischemic strokes.

This article extends our work presented at the MICCAI UNSURE workshop (Camarasa
et al., 2020). In addition to the findings of our previous work that only considered combined
epistemic uncertainty maps, this paper provides an approach to characterise different class-
specific epistemic uncertainty maps, combined epistemic uncertainty maps and analyses
additional measures of uncertainty.

In this work, our contribution is threefold. Firstly, we provide a systematic approach
to characterize both class-specific epistemic uncertainty maps, combined epistemic uncer-
tainty maps separating the epistemic uncertainty map into a uncertainty measure and an
aggregation method. Secondly, we quantitatively and statistically compare the ability of
those different epistemic uncertainty maps to assess misclassification on a segmentation of
the carotid artery on a multi-center, multi-scanner, multi-sequence dataset of MR images.
However, this analysis is not specific to this task. Thirdly, we compare our evaluation of
class-specific epistemic uncertainty derived from the MC dropout technique to the one pro-
posed in the BRATS challenge (Menze et al., 2014) in a multi-class segmentation setting.
We provide a python package1 available on the pypi platform to facilitate reproduction of
this analysis on other data and tasks.

2. Related work

2.1 Carotid artery segmentation

Automatic segmentation of lumen and vessel wall of the carotid artery on MR sequences
is a rising field. Luo et al. (2019) developed a segmentation method on TOF-MRA images
based on level set method. Arias Lorza et al. (2018) used an optimal surface graph-cut
algorithm to segment the lumen and vessel wall of different MR sequences. Wu et al. (2019)
compared different state-of-the-art deep learning methods to segment lumen and vessel wall
of the carotid artery on 2D T1-w MR images. Zhu et al. (2021) segmented the carotid
artery on a multi-sequence dataset using a cascaded 3D residual U-net.

2.2 Uncertainty in deep learning

Uncertainties are commonly divided in epistemic and aleatoric uncertainties as detailed
by Kiureghian and Ditlevsen (2009). Epistemic uncertainty is inherent to the model and
decreases with increasing dataset size, while aleatoric uncertainty is inherent to the data
and corresponds to the randomness of the input data. Aleatoric uncertainties can be further
subdivided into homoscedastic uncertainties (aleatoric uncertainties that are the same for
all inputs) and heteroscedastic uncertainties (aleatoric uncertainties specific to each input).
Finally, distributional uncertainties are described as the uncertainty due to the differences
between training and test data (also referred to as data shift).

Various approaches can be found in the literature to estimate the aleatoric uncertain-
ties. Kendall and Gal (2017) proposed to learn those uncertainties by modifying the loss
and Wang et al. (2019) proposed to generate images from the input space using test-time

1pypi url: https://pypi.org/project/monte-carlo-analysis
GitLab url: https://gitlab.com/python-packages2/monte-carlo-analysis
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augmentation. To assess epistemic uncertainty, Bayesian Deep Learning methods offer a
well grounded mathematical approach. Usually, the prediction of those methods rely on
Bayesian model averaging which consists of a marginalisation over a distribution on the
weights of the model; the epistemic uncertainty is also derived from this distribution on
the weights of the model (Wilson and Izmailov, 2020). Blundell et al. (2015) proposed the
methodology Bayes by backpropagation, to learn this distribution on the weights. Another
popular approach is to sample a set of weights using stochastic gradient Langevin dynamics
(Welling and Teh, 2011; Izmailov et al., 2018; Maddox et al., 2019). Alternatively, Lak-
shminarayanan et al. (2016) used deep ensembles to obtain multiple predictions. While
the authors claimed their approach is non-Bayesian, Wilson and Izmailov (2020) argued
that deep ensembles fall within the category of Bayesian model averaging methods. Many
recent papers applied Bayesian deep learning methods to medical segmentation tasks as
highlighted in the review of uncertainty quantification in deep learning by (Abdar et al.,
2020).

2.3 Monte-Carlo dropout

A widely used Bayesian method to measure epistemic uncertainties is Monte-Carlo dropout
(Gal and Ghahramani, 2016). Monte-Carlo dropout applies dropout at both training and
test time. The Bayesian model averaging is then performed by sampling different set of
weights using dropout at test time. Mukhoti and Gal (2018) proposed the method ”concrete
dropout” to tune the dropout rate of the Monte-Carlo dropout technique. Other stochastic
regularisation techniques were also investigated in the literature as an alternative for Monte-
Carlo dropout such as Monte-Carlo DropConnect (Mobiny et al., 2019a), Monte-Carlo Batch
Normalization (Teye et al., 2018). In medical image analysis, Monte-Carlo dropout found
application in many tasks including classification (Mobiny et al., 2019b), segmentation
(Orlando et al., 2019), regression (Laves et al., 2020) and registration (Sedghi et al., 2019).

2.4 Uncertainty analysis

Analysing qualitatively and quantitatively uncertainties is an active research question. To
evaluate distributional uncertainties, Blum et al. (2019) introduced a datashift in the test-
set and compared the ability of different distributional uncertainty methods to detect this
datashift on the Cityscapes dataset. In the field of computer vision, Gustafsson et al. (2020)
compared the ability of Monte-Carlo dropout and Deep-ensemble methods to evaluate or-
dering and calibration of epistemic uncertainties. In medical imaging, a straightforward
approach is to consider the inter-observer variability as ”ground truth” aleatoric uncertain-
ties. Jungo et al. (2018) studied the relationship between the ”ground truth” aleatoric un-
certainties and the epistemic uncertainties of a MC dropout model evaluating the weighted
mean entropy. Chotzoglou and Kainz (2019) compared predicted aleatoric uncertainties to
”ground truth” aleatoric uncertainties using ROC curves. Alternatively, in a skin lesion
classification problem, Van Molle et al. (2019) introduced an uncertainty measure based on
distribution similarity of the two most probable classes. The authors recommend the use
of this uncertainty measure compared to variance based ones since it is more interpretable
as the range of uncertainty values is between 0 and 1 (0 very certain, 1 very uncertain).
In another work, Mehrtash et al. (2019) compared calibrated and uncalibrated segmenta-
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Figure 1: Study overview

tion with negative log likelihood and Brier score. Jungo et al. (2020) compared different
aleatoric uncertainty maps and epistemic uncertainty maps based on different Bayesian
model averaging methods using the Dice coefficient between the uncertainty map and the
misclassification. Finally, Nair et al. (2020) assessed both aleatoric and epistemic uncer-
tainties via the relation to segmentation errors. To study this relationship they compare
the gain in performance when filtering out the most uncertain voxels for different epistemic
and aleatoric uncertainty maps in a single-class segmentation problem.

3. Methods

We compare epistemic uncertainty maps of carotid artery segmentation. The epistemic
uncertainty maps are based on the MC Dropout technique described in Subsection 3.1.
The different uncertainty maps are derived from the outputs of MC dropout using different
measures of uncertainty and aggregation methods, respectively detailed in Subsections 3.2
and 3.3. The method to assess the quality of the uncertainty maps and to assess the
significance of the comparison of uncertainty maps are described in Subsections 3.4 and 3.5
respectively. An overview of this method is provided in Figure 1.

3.1 MC-dropout

The MC Dropout technique consists of using dropout both at training and testing time.
While adding dropout is the only alteration of the training procedure, the testing procedure
requires the evaluation of multiple outputs at test time for a single input. From these
multiple outputs, one can obtain a prediction and class-specific or combined epistemic
uncertainty maps that will be detailed later on (Section 3.2 and 3.3).

In the following, (nx, ny, nz) ∈ N3 represents the dimensions of the input images, K the
number of input sequences, C the number of output classes, x ∈ Rnx×ny×nz×K an input
image x, j ∈ J = {0, ..., nx − 1} × {0, ..., ny − 1} × {0, ..., nz − 1} a 3D coordinate. θ ∈ Ω
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represents the parameters (weights and biases) of a trained segmentation network. We
define the following distributions:

1. yj represents the prediction distribution for a given input x and a given voxel j; this

distribution has the following support: supp(yj) = {(zc)1≤c≤C ∈ [0, 1]C |
∑C

c=1 zc = 1}

2. ycj represents the class-specific prediction distribution for given input x a given class
c and a voxel j; this distribution has the following support supp(ycj) = [0, 1]

3. Yj represents the MC dropout distribution for a given input x; this distribution has
the following support supp(Yj) = {1, ..., C}

In practice, yj and ycj correspond to the distribution over the output before applying
the Bayesian model averaging for all classes and a given class c respectively. Yj correspond
to the distribution over the output after applying the Bayesian model averaging. Note that
yj and ycj have a continuous support where Yj have a discrete support.

In segmentation using MC dropout (Gal and Ghahramani, 2016) - to obtain several
estimates of the (multi-class) segmentation - we sample T sets of parameters (θ1, ..., θT )
dropping out feature maps at test time. From those parameters, we can evaluate T out-
puts per voxel per class (P(Yj |θ = θ1), ...,P(Yj |θ = θT )) which represent samples from the
prediction distribution yj . From this sample, one can obtain the Bayesian model averaging
of the MC dropout ensemble deriving the mean of the class-specific prediction distribution
at a voxel level as follows:

P(Yj = c) = E(ycj) ≈
1

T

T∑
t=1

P(Yj = c|θ = θt). (1)

An alternative to the original (Bernoulli) dropout that applies binary noise at a feature
map level is to use Gaussian multiplicative noise. Originally this approach was proposed
by Srivastava et al. (2014) and Gal and Ghahramani (2016) guaranteed its compatibility
with the MC dropout framework. Srivastava et al. (2014) proposed the following definition
of the Bernouilli dropout and Gaussian multiplicative noise to match their expected mean
and variance:


B = λA
λBernoulli ∼ 1

1−pB(1− p)
λGaussian ∼ N (1, p

1−p)
(2)

where A is a feature map of a dropout layer input, B is the corresponding feature map
of that dropout layer output, λ ∈ R is randomly sampled from the dropout distribution, p
is the dropout rate, B is a Bernoulli distribution and N is a Gaussian distribution.

3.2 Quantifying uncertainty

At test time, MC Dropout technique produces for each voxel j a sample of the prediction
distribution yj . To quantify the uncertainty of the prediction distribution per voxel, one can
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either determine the uncertainty of a class-specific prediction distribution ycj as described
in subsection 3.2.1, study the similarity between the different class-specific prediction dis-
tributions (yc

′
j , yc

′′
j ) as described in subsection 3.2.2 or directly determine the uncertainty

of the prediction distribution yj as described in subsection 3.2.3. Those three approaches
are investigated below, proposing different measures of uncertainty for each approach.

3.2.1 Description measures

The first measures investigated are the description measures. Those measures describe the
uncertainty of a single class-specific prediction distribution. The use of description measure
to assess uncertainty is widely spread in the literature (Seeböck et al., 2019; Kendall et al.,
2017). In this article, two measures of this type are investigated: the distribution variance
and the distribution entropy.

A first possibility to compute the uncertainty of a prediction is to compute its variance,
yielding the distribution variance measure:

Dv(ycj) = Var(ycj). (3)

Another widely used description measure is the entropy of the distribution (Wang et al.,
2019). In contrast with the variance measure, which can be directly computed from data
sampled with MC dropout from the class-specific prediction distribution ycj , it requires the
estimation of an integral defined as follows:

Dh(ycj) = H(ycj) = −
∫ 1

0
fycj (v)log

(
fycj (v)

)
dv (4)

where H is the entropy of a distribution and fycj is the probability density function of the
class-specific prediction distribution ycj .

3.2.2 Similarity measures

A second approach to quantify the uncertainty is to measure the similarity of two class-
specific prediction distributions yc

′
j , yc

′′
j where c′ and c′′ are two distinct output classes. The

more those two distributions overlap, the more similar they are and the more difficult it
is to determine the predicted class, which makes the outcome more uncertain. Van Molle
et al. (2019) introduced this approach using the Bhattacharya coefficient (BC) to measure
uncertainty (0: no overlap, therefore certain; 1: identical, therefore uncertain) as follows:

Sb
(
yc
′
j , y

c′′
j

)
=

∫ 1

0

√
f
yc
′

j
(v)f

yc
′′

j
(v)dv. (5)

As an alternative measure of distribution similarity, we investigated the Kullback-Leibler
divergence. In this case, a high value represents a small overlap among distributions and
therefore the negative of the measure is considered. In addition, the Kullback-Leibler (KL)
divergence is made symmetric with respect to the distributions yc

′
j and yc

′′
j , resulting in:

Sk
(
yc
′
j , y

c′′
j

)
= −KL

(
yc
′
j ||yc

′′
j

)
−KL

(
yc
′′
j ||yc

′
j

)
(6)

where KL is the Kullback-Leibler divergence.
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3.2.3 Multi-class measures

A final option is to capture the uncertainty of the prediction distributions in one measure of
uncertainty. A first approach is to use the entropy of the MC dropout distribution (defined
as the entropy of the mean of the prediction distribution) (Jungo et al., 2020, 2018; Nair
et al., 2020; Mobiny et al., 2019b) as follows:

Mh(yj) = H (Yj) = −
C∑
c=1

E
(
ycj
)

log
(
E
(
ycj
))
. (7)

Note that unlike the distribution entropy of a class-specific prediction distribution com-
puted in Equation 4, Equation 7 does not require the discretisation of an integral.

Michelmore et al. (2018) argue that the mutual information (MI) between the MC
dropout distribution Yj and the distribution over the model parameters θ captures MC
dropout based neural network uncertainty. This approach to compute uncertainty spread
in the medical imaging field (Nair et al., 2020; Mobiny et al., 2019a). One can derive the
mutual information between the prediction Yj and the model parameters θ by adding a
second term to Equation 7 as in:

Mm(yj) =MI(Yj , θ) = H(Yj)−H(Yj |θ)

≈−
C∑
c=1

E(ycj)log
(
E(ycj)

)
+

C∑
c=1

1

T

T∑
t=1

P(Yj = c|θ = θt)log (P(Yj = c|θ = θt))

(8)

3.3 Aggregation methods

Now that the different uncertainty measures are defined, it is important to define the dif-
ferent aggregation methods to obtain the epistemic uncertainty maps from those measures
of uncertainty. Two families of aggregation methods are investigated in this subsection:
the combined aggregation methods (one uncertainty map per image) and the class-specific
aggregation methods (one uncertainty map per class per image).

3.3.1 Combined aggregation methods

In the case of a combined aggregation method, an intuitive way to assess uncertainty is to
use the description measure per voxel per class and average those descriptions per voxel over
the classes. This aggregation method, the averaged aggregation method, can be derived as
follows:

sAD (yj) =
1

C

C∑
c=1

D
(
ycj
)

(9)

where D is a description measure (either distribution variance or distribution entropy).
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Van Molle et al. (2019) used the similarity of the probability distributions of the two
most probable classes to derive an uncertainty measure. This aggregation method referred
as the similarity aggregation method can be defined as in:

sTS (yj) = S
(
yc1j , y

c2
j

)
(10)

where c1 and c2 are respectively the most and the second most probable classes of the
voxel j and S is a similarity measure (either Bhattacharya coefficient or Kullback-Leibler
divergence).

A last combined aggregation method investigated in the paper is the multi-class descrip-
tion measure. This aggregation method consists of computing a multi-class measure per
voxel as follows:

sAM (yj) = M(yj) (11)

where M is a multi-class measure (either entropy or mutual information).

3.3.2 Class-specific aggregation methods

The most direct aggregation method to obtain an uncertainty map per class is to compute
a description measure (either distribution variance or distribution entropy) per voxel per
class. This aggregation method, which we refer to as the description aggregation method,
can be described as follows:

sCDD
(
ycj
)

= D
(
ycj
)

(12)

where c′ is an output class and D a description measure (either distribution variance or
distribution entropy).

Alternatively, it is possible to apply a one versus all aggregation method. This aggre-
gation method consists of applying a multi-class measure to the distribution of the class
under study and the sum of the distributions of the other classes. This aggregation method
allows the use of a multi-class measure to obtain an uncertainty map per class as in:

s1vAM

(
ycj
)

= M
((
ycj , y

c
j

))
. (13)

where c′ is an output class and M is a multi-class measure (either entropy or mutual
information).

3.4 Evaluation

3.4.1 Combined evaluation

For the combined case, Mobiny et al. (2019a) provides a framework to assess the quality of
an uncertainty map. Considering uncertainty as a score that predicts misclassification leads
to a redefinition of the notions of true and false positives and negatives in an uncertainty
context. A voxel is considered misclassified when its predicted class and its ground truth
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Table 1: Uncertainty as a predictor of misclassification

Uncertain Certain

Misclassified UTP(τu) UFN(τu)
Correctly classified UFP(τu) UTN(τu)

class mismatch. Once an uncertainty map is thresholded at a value τu, one can define four
types of voxels as summarized in Table 1: misclassified and uncertain (UTP(τu) in a sense
that the uncertainty of the voxel accurately predicts its misclassification), misclassified and
certain (UFN(τu)), correctly classified and uncertain (UFP(τu)) and correctly classified and
certain (UTN(τu)).

For a given value of the uncertainty threshold τu, it is possible to compute the preci-
sion and the recall of uncertainty as a misclassification predictor following : UPr(τu) =

UTP(τu)
UTP(τu)+UFP(τu)

and URc(τu) = UTP(τu)
UTP(τu)+UFN(τu)

. One can compute the area under the

precision recall curve (AUC-PR) using scikit-learn implementation (Pedregosa et al., 2011).

The main characteristic of this performance measure is its independence from uncer-
tainty map calibration. Only the order of the voxels sorted according to their epistemic
uncertainty values matters as this performance measure is invariant by strictly monotonic
increasing transformation.

3.4.2 Class-specific evaluation

One can adapt the combined AUC-PR performance measure into a class-specific version.
In this scenario, the only misclassified voxels considered are those where the predicted class
or the ground truth class is the class under study, all other voxels are considered correctly
classified. With this definition of misclassification and an class-specific uncertainty map,
one can compute a class-specific version of the AUC-PR defined in Subsection 3.4.1.

Another class-specific uncertainty performance measure proposed by Mehta et al. (2020),
has been developed for the uncertainty task of the BraTS challenge (Menze et al., 2014).
This performance measure was designed to reward voxels with high confidence and correct
classification, reward voxels with low confidence and wrong classification and penalize the
uncertainty maps that have a high proportion of under-confident correct classifications.

The principle of this performance measure is to filter out voxels and remove them from
the evaluation based on their uncertainty value. For each filtering threshold τf , the voxels
with uncertainty values in the uncertainty map u above the threshold τf are removed from
the prediction. Then, one can derive the ratio of filtered true positives (tpr(τf )), the
ratio of filtered true negatives (tnr(τf )) and the filtered Dice score (Dice(τf )). The BraTS
uncertainty performance measure (BRATS-UNC) integrates these three measurements over
the range of values of the uncertainty map, as follows:

BRATS-UNC =
1

3

∫ max(u)

min(u)
Dice(τf ) + (1− tnr(τf )) + (1− tpr(τf ))dτf . (14)
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Contrary to the AUC-PR performance measure, the BRATS-UNC performance measure
take into account the calibration of the uncertainty map as tnr, tpr and Dice are integrated
over the values of the uncertainty maps. Note that the BRATS-UNC is slightly altered
compared to its original formulation by Mehta et al. (2020) to generalise to the case of
non-normalised uncertainty maps.

3.5 Statistical significance

One can estimate the posterior distribution pA>B of the proportion of models where a given
performance measure (either class-specific AUC-PR, combined AUC-PR or BRATS-UNC)
has a higher average value over the test set for uncertainty map A than for uncertainty
map B. In a Bayesian fashion, we choose a non-informative prior distribution of pA>B ∼
Beta(1, 1) which corresponds to a uniform distribution. Over the N models under study,
we observe kA>B models that have a higher average value over the test set of the studied
performance measure for uncertainty map A than for uncertainty map B. This observation
of kA>B can be used, in the Bayes formula, to obtain the posterior distribution of the
parameter pA>B ∼ Beta(1 + kA>B, 1 + N − kA>B). From this Bayesian analysis, one can
derive I95%, the 95% equally tailed credible interval of the parameter pA>B, (Makowski
et al., 2019; McElreath, 2020).

A modified version of this analysis can be performed patient-wise where pA>B is then
the proportion of patients where a given performance measure has a higher average value
over the models for uncertainty map A than for uncertainty map B. In this case, N is the
number of patients and kA>B is the number of patient with a higher average value over the
models for uncertainty map A than for uncertainty map B.

4. Experiments

4.1 Dataset

We used carotid artery MR images acquired within the multi-center, multi-scanner, multi-
sequence PARISK study (Truijman et al., 2014), a large prospective study to improve risk
stratification in patients with mild to moderate carotid artery stenosis (< 70%, the degree
of stenosis being the ratio of the diameter of the lumen and the diameter of the vessel
wall). The studied population is predominantly Caucasian (97%). The age and gender
distributions of the studied population available in Appendix F in Figure 11 show that
the mean age is 69 years old (age range: [39-89], standard deviation: 9 years) and shows
that a majority of the studied population is male (66%). The standardized MR acquisition
protocol is described in Appendix F in Table 5. We used the images of all enrolled subjects
(n=145) at three of the four study centers as these centers have used the same protocol:
Amsterdam Medical Center (AMC), the Maastricht University Medical Center (MUMC),
and the University Medical Center of Utrecht (UMCU), all in the Netherlands. The dataset
was split with 69 patients in the training set (all from MUMC), 24 patients in the validation
set (all from MUMC) and 52 patients in the test set (15 from MUMC, 24 from UMCU and 13
from AMC). Each center performed the MR imaging under 3.0-Tesla with an eight-channel
phased-array coil (Shanghai Chenguang Medical Technologies Co., Shanghai). UMCU and
MUMC acquired the imaging data of all the patients with an Achieva TX scanner (Phillips
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Healthcare, Best, Netherlands), AMC center acquired 11 of its patients with an Ingenia
scanner (Phillips Healthcare, Best, Netherlands) and 2 with an Intera scanner (Phillips
Healthcare, Best, Netherlands).

MR sequences were semi-automatically, first affinely and then elastically registered to
the T1w pre-contrast sequence. The vessel lumen and vessel wall were annotated manually
slice-wise, by trained observers with 3 years of experience, in the T1w pre-contrast sequence.
Registration and annotation were achieved with VesselMass software2. The image intensities
were linearly scaled per image such that the 5th % was set to 0 and the 95th % was set
to 1. The networks were trained and tested on a region of interest of 128x128x16 voxels
covering the common and internal carotid arteries. This region of interest of 128x128x16
voxels correspond to the bounding box centered on the center of mass of the annotations.
The observer annotated the common and internal carotid arteries (either left or right) where
the stenosis symptoms occured.

4.2 Network implementation

The networks used for our experiments are based on a 3D U-net architecture as shown in
Appendix G in Figure 12 (Ronneberger et al., 2015). Because of the low resolution of our
problem in the z-axis compared to the resolution on the x-and y-axis, we applied 2D max-
pooling and 2D up-sampling slice-wise instead of their usual 3D alternatives. We trained
the model using Adadelta optimizer (Zeiler, 2012) for 600 epochs with training batches of
size 1. The network was optimized with the Dice loss (Milletari et al., 2016). As data
augmentation, on the fly random flips along the x axis were used. The networks were
implemented in Python using Pytorch (Paszke et al., 2019) and run on a NVIDIA GeForce
2080 RTX GPU.

4.3 Studied parameters

We varied three parameters in our network : the number of images in the training sample
to analyse the robustness of the performance measure to networks with different level of
segmentation performances, the dropout rate, and the dropout type to test different varia-
tions of MC dropout. Eight values of number of images in the training set were used : 3,
5, 9, 15, 25, 30, 40 and 69 images. Also, nine dropout rates were used at train and test
time: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. Finally the two types of dropout (Bernoulli
dropout and Gaussian multiplicative noise) described in subsection 3.1 were considered. For
every combination of those three parameters, we trained a network following the procedure
detailed in Subsection 4.2. The total number of trained models used in the evaluation is
144. We discretized the integrals of Equation 4, 5 and 14 in nbins = 100 bins using a left
Riemann sum approximation and we sampled T = 50 times using MC dropout method.

5. Results

In this section, we first present the results of the different models in the segmentation
task. This will be followed by the qualitative and quantitative results of the combined
uncertainty maps. Finally, qualitative and quantitative results of class-specific uncertainty

2https://medisimaging.com/apps/vesselmass-re/
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Figure 2: Distribution over the 144 models of the Dice coefficient averaged over the test
set, for each of the three classes.

Figure 3: Distributions of the Dice scores averaged over the test set aggregated per param-
eter (training set size, dropout type, dropout rate). The presented Dice score are either
computed per class (background, vessel wall, lumen) or averaged over the classes (averaged)

maps will be shown for both performance metrics under study (class-specific AUC-PR and
BRATS-UNC).
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Figure 4: Distribution over the 144 models of the combined AUC-PR averaged over test set
for each uncertainty map. The whiskers represent the 5% and 95% interval.

Table 2: 95% credible interval of the posterior distribution of pA>B for the combined AUC-
PR performance measure and the combined uncertainty maps pairs A and B. The rows
correspond to the uncertainty maps A and the columns to the uncertainty map B. The
statistically significant differences are reported in bold (0.5 /∈ I95%). pA>B > 0.5 means
that uncertainty map A is better than uncertainty map B and the contrary if pA>B < 0.5
(Av = Averaged, Mu = Multi-class, Sim = Similarity)

Av Variance Mu Entropy Mu MI Sim BC Sim KL

Av Entropy [0.43, 0.59] [0.20, 0.35] [0.29, 0.45] [0.89, 0.97] [0.90, 0.98]
Av Variance [0.22, 0.37] [0.30, 0.46] [0.93, 0.99] [0.91, 0.98]
Mu Entropy [0.49, 0.65] [0.93, 0.99] [0.95, 1.00]
Mu MI [0.89, 0.97] [0.91, 0.98]
Sim BC [0.64, 0.79]

5.1 Segmentation

One can find the distribution of the Dice segmentation overlap per class averaged over the
test set in Figure 2. The highest averaged Dice over classes was observed with a model
trained with Gaussian multiplicative noise and a dropout rate of 0.3 on the whole training
set (69 samples). This method achieved Dice scores of 0.994 on the background, 0.764
on the vessel wall and 0.885 on the lumen. On the other end of the spectrum, the 3
models that did not converge are the models with a dropout rate of 0.9, a training set
size 3 for both Gaussian multiplicative noise and Bernoulli dropout and the model with
Gaussian multiplicative noise, a dropout rate of 0.9 and a training set size of 5. Examples
of segmentation performances for different models are displayed in the prediction row of
Figure 7, 8, 9 and 10. The effect of the different hyperparameters is shown in Figure 3. As
expected, better performance is observed with an increasing dataset size while a high value
of dropout harms the prediction. It also shows that very similar results are observed for
both Gaussian multiplicative noise and Bernoulli dropout.
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5.2 Combined uncertainty maps evaluation

Figure 4 describes the distribution of the combined AUC-PR averaged over the test set. The
95% equally tailed credible interval of the posterior distribution of pA>B, the proportion of
models that have a higher combined AUC-PR average value over the test set for uncertainty
map A than for uncertainty map B, is reported in Table 2. A value of pA>B superior
to 0.5 indicates that uncertainty map A performs better than uncertainty map B and
similarly a value lower to 0.5 indicates the opposite. A pair-wise comparison indicates a
statistically significant difference if the 95% equally tailed credible interval does not contain
the expected random behaviour (pA>B = 0.5). Twenty-six out of the thirty pair-wise
comparisons are statistically significant (0, 5 /∈ I95%). The statistically significant best
results are observed with the multi-class entropy and the multi-class mutual information.
The statistically significant worst result is observed with the similarity KL. The different
posterior distributions of pA>B are reported in Figure13 in Appendix C.

Figure 7 provides a qualitative visualization of the different uncertainty maps for differ-
ent models and patients. All the uncertainty maps shows higher value of uncertainty at the
inner and outer boundaries of the vessel wall which is to be expected as it corresponds to
difficult areas to segment. Also for each uncertainty map the level of uncertainty decreases
when performance increases. The similarity KL tend to mark as equally uncertain large
regions of the image which explains its bad performance.

Figure 21 in Appendix G presents the combined precision recall curves averaged over
the patients of the test set for the best model (model with gaussian multiplicative noise,
a dropout rate of 0.3 trained on the whole training set). This plots highlight the poor
performance of both uncertainty maps using the Similarity aggregation method.

To assess generalisability of our results, a similar statistical analysis was conducted
individually for the different centers individually (AMC, UMCU and MUMC) and for the
different types of dropout (Bernouilli dropout or Gaussian Multiplicative Noise). Figure 20
in Appendix F presents the correlation plots of the mode of the posterior distribution of
pA>B obtained on the whole test set and on the studied subset (AMC, UMCU, MUMC,
Bernouilli dropout and Gaussian Multiplicative Noise). The statistical analysis generalises
well to a subset if the points of the correlation plot are close to the line y = x.

Table 6 in Appendix H presents a modified version of statistical analysis. In this analysis
instead of all the models only the 10 best models are considered (higher averaged dice
score on the test set). Due to the small amount of experiments considered the combined
AUC-PR is not aggregated experiment-wise but patient-wise. pA,B correspond then to the
proportion of patients with a higher combined AUC-PR averaged over the 10 best models for
uncertainty map A than for uncertainty map B. Similar conclusion can be drawn regarding
the best and worst combined uncertainty maps than in the main statistical analysis.

5.3 Class-specific uncertainty maps comparison

In a class-specific case, two performance measures are under study, the class-specific AUC-
PR and the BRATS-UNC. Figures 5 and 6 describe the distribution of the average value
over the test set for the different models of the class-specific AUC-PR performance measure
and of the BRATS-UNC performance measure respectively. The 95% equally tailed credible
interval of pA>B, the proportion of models that have a higher value of AUC-PR for uncer-

15



Camarasa et al.

Figure 5: Distribution over the 144 models of the class-specific AUC-PR averaged over the
test set for each class. The whiskers represent the 5% to 95% interval.

Figure 6: Distribution over the 144 models of the BRATS-UNC performance measure av-
eraged over the test set for each class. The whiskers represent the 5% to 95% interval.

tainty map A than uncertainty map B, is reported in Table 3; a similar table is provided for
the BRATS-UNC performance measure in Table 4. Ten out of the twelve pair-wise com-
parisons of uncertainty maps for the different classes showed significant differences for the
class-specific AUC-PR and all of the pair-wise comparisons showed significant differences
for the BRATS-UNC performance measure. For the three classes under-study, the best
results were observed for the class-specific AUC-PR with the one versus all entropy and
the worst with the class-wise entropy. The best results were observed for the BRATS-UNC
performance measure with the class-wise entropy and the worst with the one versus all
entropy.

The posterior distribution pA>B for the class-specific AUC-PR performance measure
can be respectively found for the background, the vessel wall and the lumen in Figure 14,
15 and 16 of Appendix D. Similarly, the posterior distribution pA>B for the BRATS-UNC
performance measure can be respectively found for the background, the vessel wall and the
lumen in Figure 17, 18 and 19 of Appendix E.

A visualization of the different uncertainty maps for different models and patients is
available in Figure 8for the background class, in Figure 9 for the vessel wall class and
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Table 3: 95% credible interval of the posterior distribution of pA>B for the class-specific
AUC-PR performance measure and the class-specific uncertainty maps pairs A and B. The
rows correspond to the uncertainty maps A and the columns to the uncertainty map B. The
statistically significant results are reported in bold (0.5 /∈ I95%). pA,B > 0.5 means that
uncertainty map A is better than uncertainty map B and the contrary if pA>B < 0.5. (CW
= Class-wise, 1vA = One versus all)

Background

CW variance 1vA Entropy 1vA MI

CW Entropy [0.31, 0.46] [0.09, 0.20] [0.39, 0.55]
CW variance [0.07, 0.17] [0.90, 0.98]
1vA Entropy [0.87, 0.96]

Vessel Wall

CW variance 1vA Entropy 1vA MI

CW Entropy [0.26, 0.41] [0.03, 0.11] [0.36, 0.52]
CW variance [0.03, 0.11] [0.94, 0.99]
1vA Entropy [0.92, 0.98]

Lumen

CW Variance 1vA Entropy 1vA MI

CW Entropy [0.33, 0.48] [0.06, 0.16] [0.45, 0.61]
CW Variance [0.01, 0.06] [0.95, 1.00]
1vA Entropy [0.95, 1.00]

in Figure 10 for the lumen class. As for the combined uncertainty maps, the level of
uncertainty decreases when the level of performance increases. The most uncertain areas
are the boundaries of the considered class (either background, vessel wall and lumen). This
is coherent as it corresponds to difficult areas to segment. Those qualitative results also
show that for all classes the class-wise entropy have the lowest level of uncertainty as it is
the most hypo-intense uncertainty map and the one-vs-all entropy have the highest level of
uncertainty as it is the most hyper-intense uncertainty map.

Figure 22 in Appendix G presents the class-specific precision recall curves and the com-
ponent integrated in the BRATS-UNC performance measure averaged over the patients of
the test set for the best model (model with gaussian multiplicative noise, a dropout rate
of 0.3 trained on the whole training set). This figure shows that the tpr curve dominate
the integral for minority classes (vessel wall and lumen) and tnr dominate the integral for
the background class. The curvature of the vessel-wall tpr and the background tnr curves
increases for uncertainty maps with a lower level of uncertainty such as in the class-wise
entropy. This confirms that contrary to class-specific AUC-PR, BRATS-UNC assesses the
calibration of the uncertainty map.

To assess generalisability of our results, a similar statistical analysis was conducted
individually for the different centers individually (AMC, UMCU and MUMC) and for the
different types of dropout (Bernouilli dropout or Gaussian Multiplicative Noise). Figure 20
in Appendix F presents the correlation plots of the mode of the posterior distribution of
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Table 4: 95% credible interval of the posterior distribution of pA>B for the BRATS-UNC
performance measure per class and the class-specific uncertainty maps pairs A and B.The
rows correspond to the uncertainty maps A and the columns to the uncertainty map B. The
statistically significant results are reported in bold (0.5 /∈ I95%). pA>B > 0.5 means that
uncertainty map A is better than uncertainty map B and the contrary if pA>B < 0.5 (CW
= Class-wise, 1vA = One versus all)

Background

CW Variance 1vA Entropy 1vA MI

CW Entropy [0.89, 0.97] [0.96, 1.00] [0.96, 1.00]
CW Variance [0.96, 1.00] [0.97, 1.00]
1vA Entropy [0.00, 0.04]

Vessel Wall

CW Variance 1vA Entropy 1vA MI

CW Entropy [0.79, 0.90] [0.95, 1.00] [0.89, 0.97]
CW Variance [0.97, 1.00] [0.96, 1.00]
1vA Entropy [0.00, 0.03]

Lumen

CW Variance 1vA Entropy 1vA MI

CW Entropy [0.84, 0.94] [0.96, 1.00] [0.94, 0.99]
CW Variance [0.97, 1.00] [0.94, 0.99]
1vA Entropy [0.00, 0.04]

pA>B obtained on the whole test set and on the studied subset (AMC, UMCU, MUMC,
Bernouilli dropout and Gaussian Multiplicative Noise). The statistical analysis generalises
well to a subset if the points of the correlation plot are close to the line y = x.

Tables 7 and 8 in Appendix H presents a modified version of statistical analysis for class-
specific AUC-PR and BRATS-UNC respectively. In this analysis instead of all the models
only the 10 best models are considered (higher averaged dice score on the test set). Due
to the small amount of experiments considered the studied performance measure (either
class-specific AUC-PR or BRATS-UNC) are not aggregated experiment-wise but patient-
wise. pA,B correspond then to the proportion of patients with a higher value of the studied
performance measure averaged over the the 10 best models for uncertainty map A than for
uncertainty map B. For both performance measures and all classes, similar conclusion can
be drawn regarding the best uncertainty maps than in the statistical analyses presented in
Tables 3 and 4.
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Figure 7: Example of the different uncertainty measures in a combined case. From top to
bottom, rows represent: the T1w pre-contrast MR image, the multi-class prediction (blue
= background, green = vessel wall, red = lumen, the level of brightness corresponds to
the probability of the predicted class), the ground truth and the different uncertainty maps
(Averaged Entropy, Averaged Variance, Multi-class Entropy, Mutual MI, Similarity BC and
Similarity KL). Columns 1–3 and 4–6 correspond to predictions with 2 different patients
and columns 1 and 4, 2 and 5, 3 and 6 correspond to 3 different networks. The indicated
Dice is the averaged Dice coefficient over classes
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Figure 8: Example of the different uncertainty measures corresponding to the background
class. From up to down, rows represent: the T1w pre-contrast MR image, the background
prediction, the background ground truth and the different uncertainty maps (Class-wise
Entropy, Class-wise Variance, One versus all Entropy, One vs all MI). The columns corre-
spond to predictions with 2 different patients and with 3 different networks. The indicated
Dice is the Dice of the background class
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Figure 9: Example of the different uncertainty measures corresponding to the vessel wall
class. From up to down, rows represent: the T1w pre-contrast MR image, the vessel
wall prediction, the vessel wall ground truth and the different uncertainty maps (Class-
wise Entropy, Class-wise Variance, One versus all Entropy, One vs all MI). The columns
correspond to predictions with 2 different patients and with 3 different networks. The
indicated Dice is the Dice of the vessel wall class
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Figure 10: Example of the different uncertainty measures corresponding to the lumen class.
From up to down, rows represent: the T1w pre-contrast MR image, the lumen prediction,
the lumen ground truth and the different uncertainty maps (Class-wise Entropy, Class-wise
Variance, One versus all Entropy, One vs all MI). The columns correspond to predictions
with 2 different patients and with 3 different networks. The indicated Dice is the Dice of
the lumen class
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6. Discussion

In a combined scenario, considering the relationship between the order of the voxels sorted
according to their epistemic uncertainty values and the misclassification of the prediction
(using combined AUC-PR performance measure), the multi-class entropy and multi-class
mutual information statistically out-perform the averaged variance and the averaged entropy
which in turn statistically out-perform the similarity BC which out-performs the similarity
KL. This analysis highlights the good performances of the multi-class aggregation method
and the averaged aggregation method compared with the similarity aggregation method
which is coherent with their extensive use in the literature (Kendall et al., 2017; Seeböck
et al., 2019; Mobiny et al., 2019b,a). The superiority of the multi-class aggregation method
over the class-wise aggregation method seems also coherent as the averaged aggregation
method consists of a combination of class-specific uncertainty maps where the multi-class
aggregation method is designed for multi-class problems.

With similar considerations for class-specific uncertainty maps, the one versus all entropy
statistically out-performs the class-wise variance which in turn statistically out-performs the
other uncertainty maps under study. We can then conclude that with these considerations,
the entropy uncertainty measure out-performs the other uncertainty measures with a multi-
class aggregation method in a combined scenario and with a one versus all aggregation
method in a class-specific scenario.

In our class-specific analysis, we compared our performance measure (class-specific AUC-
PR) to the performance measure used in the BraTS challenge (BRATS-UNC) which assesses
the calibration of an uncertainty map. This comparison highlights the four following points.
Firstly, the ranking of the different uncertainty maps for a given performance measure
(either BRATS-UNC or class-specific AUC-PR) does not depend on the considered class
as, for the three classes, the uncertainty maps that gave the best results are the same
and the statistical comparisons of uncertainty maps are similar. Secondly, the range of
values of the class-specific AUC-PR is similar for different classes whereas it varies wildly
between classes for the BRATS-UNC performance measure. This is because the three
components integrated by the BRATS-UNC depends on the class imbalance. Thirdly, the
ranking of uncertainty maps is different with the class-specific AUC-PR and the BRATS-
UNC performance measures. The best results are observed with the one versus all entropy
for the class-specific AUC-PR performance measure and with the class-specific entropy for
the BRATS-UNC performance measure. A plausible explanation is that class-specific AUC-
PR only considers the correct order of voxels sorted according to their epistemic uncertainty
values where BRATS-UNC also measures the calibration of the uncertainty map. In that
case, the BRATS-UNC penalizes the hyper-intensity of the class-wise entropy and rewards
the hypo-intensity of the one versus all entropy in the region correctly segmented. Forthly,
similarly to Nair et al. (2020), our qualitative results shows that class-wise variance and the
one versus all mutual information appears similar in term of calibration. For uncertainty
maps with similar calibrations, it is coherent that the BRATS-UNC focusses on the order
of the voxels sorted according to their epistemic uncertainty values and therefore gives the
same results as the class-specific AUC-PR.

A limitation of our analysis is the computation of the entropy defined in Equations 4
and of the Bhattacharya coefficient defined in Equation 5. This computation introduce an
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extra hyper-parameter, the discretization step of the integral. A too high or too low value of
this discretization step will lead to a poor approximation of the uncertainty measure. The
value of this hyper-parameter was set to the value found in the literature in Van Molle et al.
(2019) but further tuning might lead to better results. However, the value set in this article
seems reasonable as the best result in the class-specific case with BRATS-UNC performance
measure is observed with the class-wise entropy that is subject to that discretization.

In this article, we proposed a systematic approach to characterize epistemic uncertainty
maps that can be used in a multi-class segmentation context. We also proposed a method-
ology to analyse the quality of multi-class epistemic uncertainty maps. Both the systematic
approach and the methodology are not data specific or task specific. Therefore, to repro-
duce our work on other datasets and tasks, we made a python package available on pypi
platform.

7. Conclusion

In conclusion, we proposed a systematic approach to characterize epistemic uncertainty
maps. We validated our methodology over a large set of trained models to compare ten
uncertainty maps: six combined uncertainty maps and four class-specific uncertainty maps.
Our analysis was applied to the multi-class segmentation of the vessel-wall and the lumen of
the carotid artery applied to a multi-center, multi-scanner, multi-sequence study. For our
application and assessing the relationship between the order of the voxels sorted according to
their epistemic uncertainty values and the misclassification, the best combined uncertainty
maps observed are the multi-class entropy and the multi-class mutual information and
the best class-specific uncertainty maps observed is one versus all entropy. Considering the
calibration of the uncertainty map, the best results are observed with the class-wise entropy.
Our systematic approach, being data and task independent, could be reproduced on any
multi-class segmentation problem.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells,
and Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2015, pages 234–241, Cham, 2015. Springer International Publishing.
ISBN 978-3-319-24574-4.

Alireza Sedghi, Tina Kapur, Jie Luo, Parvin Mousavi, and William M Wells. Probabilistic
Image Registration via Deep Multi-class Classification: Characterizing Uncertainty. In
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging and Clinical
Image-Based Procedures, pages 12–22. Springer, 2019.

28



Comparison of Epistemic Uncertainty Maps
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Appendix A: Dataset description

Table 5: MR images scan parameters. (QIR = quadruple inversion recovery, TSE = turbo
spin echo, IR = inversion recovery, FFE = fast field echo and, TFE = turbo field echo, FA
= flip angle, AVS = acquired voxel size, RVS = reconstructed voxel size)

Pulse T1wQIR TSE TOF FFE IR-TFE T2w TSE
Sequence pre-contrast post-contrast

Repetion time (ms) 800 800 20 3.3 4800
Echo time (ms) 10 10 5 2.1 49
Inversion time (ms) 282,61 282,61 304
FA (degrees) 90 90 20 15 90
AVS (mm2) 0.62 x 0.67 0.62 x 0.67 0.62 x 0.62 0.62 x 0.63 0.62 x 0.63
RVS (mm2) 0.30 x 0.30 0.30 x 0.30 0.30 x 0.30 0.30 x 0.24 0.30 x 0.30
Slice thickness (mm) 2 2 2 2 2

Figure 11: Description of the dataset. The left figure corresponds to the distribution of
gender across the 145 patients under study and the right figure corresponds to the distri-
bution of age in years across the 145 patients under study (µ = 68.8, σ = 9.2).
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Appendix B: Network structure
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Figure 12: Network structure

Appendix C: Posterior distribution of pA>B for the combined AUC-PR
performance measure

Figure 13: Posterior distribution of pA>B for the combined AUC-PR performance measure
and the combined uncertainty maps pairs A and B, the red dashed line represents the
expected value if compared uncertainty maps perform equally and the blue area under the
curve represents the 95% credible interval
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Appendix D: Posterior distribution of pA>B for the class-specific AUC-PR
performance measure

Figure 14: Posterior distribution of pA>B for the class-specific AUC-PR performance mea-
sure and the background uncertainty maps pairs A and B, the red dashed line represents
the expected value if compared uncertainty maps perform equally and the blue area under
the curve represents the 95% credible interval

Figure 15: Posterior distribution of pA>B for the class-specific AUC-PR performance mea-
sure and the vessel wall uncertainty maps pairs A and B, the red dashed line represents the
expected value if compared uncertainty maps perform equally and the blue area under the
curve represents the 95% credible interval
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Figure 16: Posterior distribution of pA>B for AUC-PR performance measure and the lu-
men uncertainty maps pairs A and B, the red dashed line represents the expected value if
compared uncertainty maps perform equally and the blue area under the curve represents
the 95% credible interval

Appendix E: Posterior distribution of pA>B for the BRATS-UNC
performance measure

Figure 17: Posterior distribution of pA>B for the BRATS-UNC performance measure and
the background uncertainty maps pairs A and B, the red dashed line represents the expected
value if compared uncertainty maps perform equally and the blue area under the curve
represents the 95% credible interval
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Figure 18: Posterior distribution of pA>B for the BRATS-UNC performance measures and
the vessel wall uncertainty maps pairs A and B, the red dashed line represents the expected
value if compared uncertainty maps perform equally and the blue area under the curve
represents the 95% credible interval

Figure 19: Posterior distribution of pA>B for the BRATS-UNC performance measures and
the lumen uncertainty maps pairs A and B, the red dashed line represents the expected
value if compared uncertainty maps perform equally and the blue area under the curve
represents the 95% credible interval
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Appendix F: pA>B correlations

Figure 20: Correlation plots between the mode of the posterior distribution of pA>B com-
puted on the whole results and the mode of the posterior distribution of pA>B computed on
a subset of the results. Each plot contains blue dots that represent all the pairwise compar-
isons between uncertainty maps A and B for a given subset of the results (indicated in the
column header) and a given performance measure (indicated in the row header). The x-axis
correspond to the mode of the posterior distribution of pA>B observed on the subset of the
results and the y-axis correspond to the mode of the posterior distribution of pA>B observed
on the whole results. The rows correspond to the different performance measure (Combined
AUC-PR, AUC-PR Background, AUC-PR Vessel Wall , AUC-PR Lumen, BRATS-UNC
Background, BRATS-UNC Vessel Wall and BRATS-UNC Lumen). The three first columns
correspond to the different the different test sets (AMC, MUMC and UMCU). The two last
columns correspond to the experiment for the different type of dropout (Bernoulli dropout
or Gaussian multiplicative noise).
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Appendix G: Best model averaged curves

Figure 21: Combined precision recall curve of the best model averaged over the test set.
The dashed line correspond to the random behaviour.

Figure 22: The three plots on the left correspond to the class-specific precision recall curves
of the best model averaged over the test set. On the right the curves correspond to the 3
components integrated in the BRATS-UNC performance measure of the best model aver-
aged over the test set. All plots have a shared legend on the right.
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Appendix H: Patient-wise pA>B of the 10 best models

Table 6: 95% credible interval of the posterior distribution of patient-wise pA>B of the 10
best models for the combined AUC-PR performance measure and the combined uncertainty
maps pairs A and B. The rows correspond to the uncertainty maps A and the columns to the
uncertainty map B. The statistically significant differences are reported in bold (0.5 /∈ I95%).
pA>B > 0.5 means that uncertainty map A is better than uncertainty map B and the
contrary if pA>B < 0.5 (Av = Averaged, Mu = Multi-class, Sim = Similarity)

AV Variance Mu Entropy Mu MI Sim BC Sim KL

AV Entropy [0.23, 0.48] [0.07, 0.25] [0.09, 0.30] [0.90, 1.00] [0.90, 1.00]
AV Variance [0.00, 0.10] [0.26, 0.52] [0.93, 1.00] [0.93, 1.00]
Mu Entropy [0.42, 0.68] [0.93, 1.00] [0.93, 1.00]
Mu MI [0.93, 1.00] [0.93, 1.00]
Sim BC [0.58, 0.82]

Table 7: 95% credible interval of the posterior distribution of patient-wise pA>B of the
10 best models for the class-specific AUC-PR performance measure and the class-specific
uncertainty maps pairs A and B. The rows correspond to the uncertainty maps A and the
columns to the uncertainty map B. The statistically significant results are reported in bold
(0.5 /∈ I95%). pA,B > 0.5 means that uncertainty map A is better than uncertainty map B
and the contrary if pA>B < 0.5. (CW = Class-wise, 1vA = One versus all)

Background

CW Variance 1vA Entropy 1vA MI

CW Entropy [0.17, 0.40] [0.07, 0.25] [0.23, 0.48]
CW Variance [0.02, 0.16] [0.84, 0.98]
1vA Entropy [0.84, 0.98]

Vessel Wall

CW Variance 1vA Entropy 1vA MI

CW Entropy [0.18, 0.42] [0.01, 0.13] [0.22, 0.46]
CW Variance [0.00, 0.10] [0.90, 1.00]
1vA Entropy [0.90, 1.00]

Lumen

CW Variance 1vA Entropy 1vA MI

CW Entropy [0.35, 0.61] [0.22, 0.46] [0.40, 0.67]
CW Variance [0.02, 0.16] [0.77, 0.95]
1vA Entropy [0.82, 0.97]
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Table 8: 95% credible interval of the posterior distribution of patient-wise pA>B of the
10 best models for the BRATS-UNC performance measure per class and the class-specific
uncertainty maps pairs A and B. The rows correspond to the uncertainty maps A and the
columns to the uncertainty map B. The statistically significant results are reported in bold
(0.5 /∈ I95%). pA>B > 0.5 means that uncertainty map A is better than uncertainty map B
and the contrary if pA>B < 0.5 (CW = Class-wise, 1vA = One versus all)

Background

CW Variance 1vA Entropy 1vA MI

CW Entropy [0.93, 1.00] [0.93, 1.00] [0.93, 1.00]
CW Variance [0.93, 1.00] [0.93, 1.00]
1vA Entropy [0.00, 0.07]

Vessel Wall

CW Variance 1vA Entropy 1vA MI

CW Entropy [0.82, 0.97] [0.93, 1.00] [0.93, 1.00]
CW Variance [0.93, 1.00] [0.93, 1.00]
1vA Entropy [0.00, 0.07]

Lumen

CW Variance 1vA Entropy 1vA MI

CW Entropy [0.90, 1.00] [0.93, 1.00] [0.93, 1.00]
CW Variance [0.93, 1.00] [0.93, 1.00]
1vA Entropy [0.00, 0.07]
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