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Abstract

Deep Learning (DL) has shown potential in accelerating Magnetic Resonance Image acqui-
sition and reconstruction. Nevertheless, there is a dearth of tailored methods to guar-
antee that the reconstruction of small features is achieved with high fidelity. In this
work, we employ adversarial attacks to generate small synthetic perturbations, which
are difficult to reconstruct for a trained DL reconstruction network. Then, we use ro-
bust training to increase the network’s sensitivity to these small features and encourage
their reconstruction. Next, we investigate the generalization of said approach to real
world features. For this, a musculoskeletal radiologist annotated a set of cartilage and
meniscal lesions from the knee Fast-MRI dataset, and a classification network was de-
vised to assess the reconstruction of the features. Experimental results show that by
introducing robust training to a reconstruction network, the rate of false negative fea-
tures (4.8%) in image reconstruction can be reduced. These results are encouraging,
and highlight the necessity for attention to this problem by the image reconstruction
community, as a milestone for the introduction of DL reconstruction in clinical prac-
tice. To support further research, we make our annotations and code publicly available
at https://github.com/fcaliva/fastMRI_BB_abnormalities_annotation.

Keywords: MRI Reconstruction, Adversarial Attack, Robust Training, Abnormality
Detection, Fast-MRI.

Magnetic Resonance Imaging (MRI) is a widely used screening modality. However, long
scanning time, tedious post processing operations and lack of standardized acquisition pro-
tocols make automated and faster MRI desirable. Deep learning research in the domain of
accelerated MRI reconstruction is an active area of research. In a recent retrospective study,
Recht et al. (2020) suggests that clinical and (up to 4×) DL-accelerated images can be in-
terchangeably utilized. However, results of that study demonstrate that clinically relevant
features can lead to discordant clinical opinions. Focusing on imaging the knee joint, small
structures- which are clinically relevant not only for grading the severity of lesions, but also
for deciding further course of treatment (McAlindon et al., 2014)- are often difficult to recon-
struct, and their reconstruction quality is generally overlooked by standard image fidelity
metrics. This adds to the concerning results presented at the Fast-MRI challenge, which
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Figure 1: Overview of the proposed approach. At each training iteration, an attacker iden-
tifies which small features are difficult to be reconstructed, given the current net-
work parameters and the input MRI. The network parameters are then updated
so that the reconstruction of the small features is encouraged.

was held during NeurIPS 2019 (https://slideslive.com/38922093/medical-imaging-
meets-neurips-4): top-performing deep learning models failed in reconstructing some rel-
atively small abnormalities such as meniscal tear and subchondral osteophytes. A similar
outcome was observed during the second Fast-MRI challenge in 2020: multiple referee ra-
diologists raised that none of the submitted 8× accelerated reconstructed images would be
clinically acceptable (Muckley et al., 2020). We argue that in the current state, it must be
acknowledged that irrespective of a remarkable improvement in image quality of acceler-
ated MRI, the false negative reconstruction phenomenon is still present. Such phenomenon
closely relates to the instability of deep learning models for image reconstruction, which
was discussed in Antun et al. (2020). Instabilities can manifest in the form of severe re-
construction artefacts caused by imperceptible perturbations in the sampling and/or image
domains. Otherwise, instabilities can lead to what Cheng et al. (2020) defined as false neg-
ative features: small perceptible features, which in spite of their presence in the sampled
data, have disappeared upon image reconstruction. Instances of this phenomenon can be
tumors or lesions that disappeared in the reconstructed images. Arguably, this could be a
direct consequence of the limited training data often available in medical imaging, which
might not accurately represent certain pathological phenotypes. This can cause a dangerous
outcome as shown in Cohen et al. (2018), where reconstructed images were hallucinated, in
the sense that important clinical features were not reconstructed simply because they were
not available in the training distribution. In an attempt to better explain this false negative
phenomenon, in Cheng et al. (2020), we investigated two hypotheses: i) under-sampling is
the cause for loss of small abnormality features; and ii) the small abnormality features are
not lost during under-sampling; albeit they result to be attenuated and potentially rare. A
graphical overview of the approach is shown in Fig. 1.

Based on these assumptions, if an under-sampling procedure had removed the infor-
mation related to a small feature available in the fully-sampled signal, a reconstruction

2

https://slideslive.com/38922093/medical-imaging-meets-neurips-4
https://slideslive.com/38922093/medical-imaging-meets-neurips-4


Adversarial Robust Training in MRI Reconstruction

A B

G

C

E F H

D

Figure 2: The top row (A-D) shows a ‘failed’ FNAF attack. The bottom row (E-H) shows
a ‘successful’ FNAF attack. Column 1 contains the under-sampled zero-filled
images. Column 2 contains the fully-sampled images. Column 3 contains U-
Net reconstructed images. Column 4 contains FNAF-robust U-Net reconstructed
images. (C-G-D-H)

algorithm would be able to recover that information only through other confounded struc-
tural changes, if present. This led to a realization for the necessity of new loss functions
or metrics to be adopted in image reconstruction. In practice, deep learning reconstruction
models trained to only maximize image quality can fail when it comes to reconstructing
small and infrequent structures, as experimentally shown in many studies (Cheng et al.,
2020; Zbontar et al., 2018; Antun et al., 2020; Muckley et al., 2020). With respect to the
second hypothesis, if the (albeit rare) features were still available, a learning-based recon-
struction method should be able to reconstruct those features; yet, this is contingent upon
placing the right set of priors during training and to achieve this result, adversarial training
is a valid solution. To investigate these hypotheses, in Cheng et al. (2020), False Negative
Adversarial Features (FNAF) were introduced. Examples of FNAF are shown in Fig. 2;
these are minimally perceivable features synthetically injected in the input data- through
adversarial attacks- to mislead the reconstruction network and make it unable to reconstruct
the features. Subsequently, in the pursuance of reconstructing these small features, a robust
training approach was adopted, where the loss function over-weighted the reconstruction
importance of such features.
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Calivá, Cheng, Shah and Pedoia

This paper extends Cheng et al. (2020) leading to the following contributions:

• A musculoskeletal (MSK) radiologist manually annotated features that are relevant in
the diagnosis and monitoring of MSK related diseases, including bone marrow edema
and cartilage lesions. Bounding boxes were placed in relevant regions of the Fast-
MRI knee dataset. The manual annotations can be accessed at https://github.

com/fcaliva/fastMRI_BB_abnormalities_annotation.

• We investigated the effects of robust training with FNAF on reconstructing real-world
abnormalities present in the Fast-MRI knee dataset, using the available bounding
boxes.

• We quantitatively investigated the effects of training using real abnormalities, utilizing
the available bounding boxes.

• We investigated the effects of robust training on a downstream task, such as feature
abnormality classification. The experimental study showed that when a FNAF-based
robust training is employed, the false negative rate in abnormality classification is
reduced.

• We further highlight the need for using features that better represent real-world fea-
tures as part of the robust training procedure, speculating that this would reduce
network instability and improve reliability and fidelity in image reconstruction.

1. Related works

1.1 Clinical background

During the past decade, non-invasive imaging has played a big role in the discovery of
biomarkers in support of diagnosis, monitoring and assessment of knee joint degeneration.
Osteoarthritis (OA) is a degenerative joint disease, and a leading cause of disability for 303
million people worldwide (Kloppenburg and Berenbaum, 2020). Scoring systems, such as
the MRI Osteoarthritis Knee Score (MOAKS) (Hunter et al., 2011) and the Whole-Organ
Magnetic Resonance Imaging Score (WORMS) (Peterfy et al., 2004) have been applied for
grading cartilage lesions in subjects with OA, and comparing lesion severity with other
findings such as meniscal defects, presence of bone marrow lesions, as well as additional
radiographic and clinical scores (Link et al., 2003; Felson et al., 2001, 2003). Morphological
abnormalities which are detectable from MRIs have been considered to be associated with
incident knee pain (Joseph et al., 2016), and predictors of total knee replacement surgery
(Roemer et al., 2015). Roemer et al. (2015) observed a significant knee replacement risk
when knees had exhibited, among other phenotypes, severe cartilage loss, bone marrow
lesions, meniscal maceration, effusion or synovitis. Small abnormalities are fundamental
for clinical management, and current image reconstruction techniques should be reliable in
recovering such features.

1.2 MRI reconstruction with deep learning

MRI is a first-choice imaging modality when it comes to studying soft tissues and performing
functional studies. While it has been widely adopted in clinical environments, MRI has
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limitations, one of which depends on the data collection: it is a sequential and progressive
procedure where data points are acquired in the k-space. The higher the resolution, the more
data points are needed to be sampled to satisfy the desired image quality. A strategy to
reduce the scanning time is to acquire a reduced number of phase-encoding steps. However,
this results in aliased raw data, which- in parallel imaging for example- are resolved by
exploiting the knowledge about the utilized coil geometry and spatial sensitivity (Glockner
et al., 2005). The new paradigm in image reconstruction is that DL-based approaches are
capable of converting under-sampled data to images that include the entire information
content (Recht et al., 2020). According to Liang et al. (2019) and Hammernik and Knoll
(2020), this is key in MRI reconstruction. There exists multiple approaches to accomplish
MRI reconstruction by means of DL. Liang et al. (2019) suggest three main categories of
methods: data-driven, model-driven or integrated. Data-driven approaches do not require
particular domain knowledge and mainly rely on the availability of a large amount of data.
As a result, they tend to be data-hungry in their efforts to learn the mapping between k-space
and the reconstructed MRI. Conversely, model-based approaches mitigate the need for big
data by restricting the solution space through the injection of physics-based prior knowledge.
Those methods, which reproduce the iterative approach of compressed sensing (Lustig et al.,
2007), belong to the model-based set. Integrated approaches can combine positive aspects
of both previous solutions.

1.3 Adversarial attacks

Adversarial attacks are small, imperceptible perturbations purposefully added to input im-
ages with the aim to mislead machine learning models. To apply adversarial attacks to MRI
reconstruction with deep learning, it is important to understand the most studied forms
of adversarial attacks. There exists a vast literature which attempts to explain adversarial
examples (Goodfellow et al., 2015; Bubeck et al., 2018; Gilmer et al., 2018; Mahloujifar
et al., 2019; Shafahi et al., 2019a). One notable theory by Schmidt et al. (2018) states that
adversarial examples are a consequence of data scarcity, and is linked to the fact that the
true data distribution is not captured in small datasets. Another profound explanation is
provided by Ilyas et al. (2019), which shows that adversarial successes are mainly supported
by a model’s ability to generalize on a standard test set by using non-robust features. In
other words, adversarial examples are more likely a product of datasets rather than that of
machine learning models. To make a model resistant to adversarial attacks without addi-
tional data, one could employ adversarial training and provide the model with a prior that
remarks the fact that non-robust features are not useful as demonstrated in Goodfellow
et al. (2015) and Madry et al. (2018). These findings are orthogonal to the second hypoth-
esis investigated in this paper: if we interpret the distribution of FNAF as the distribution
of robust features, we may attribute FNAF reconstruction failure to the dataset’s inability
to capture FNAF’s distribution.

While the majority of adversarial attacks focus on discriminative models, Kos et al.
(2017) proposes a framework to attack variational autoencoders (VAE) and VAE-Generative
Adversarial Networks (GAN). Specifically, input images are imperceptibly perturbed so that
the generative models synthesize target images that belong to a different class. Although
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reconstruction models can be seen as generative, we differ from this body of work, mainly
because we focus on generating perceptible features that perform non-targeted attacks.

Going beyond small perturbations, a set of more realistic attacks produced by 2D and
3D transformations are proposed in Xiao et al. (2018) and Athalye et al. (2018). Similarly
to our work, these studies perform perceptible attacks. Arguably, the most realistic attacks
are physical attacks, which in Kurakin et al. (2017) are achieved by altering the physical
space before an image is digitally captured. Kügler et al. (2018) propose a physical attack
on dermatoscopy images by drawing on the skin around selected areas. Although these
attacks could more easily translate to real world scenarios, it would be nearly impossible to
perform physical attacks to MRIs. Recently, Chen et al. (2020) leveraged adversarial attacks
to introduce realistic intensity inhomogeneities to cardiac MRIs, which in turn boosted the
performance in a segmentation task.

1.4 Adversarial attacks and robustness in medical imaging

Adversarial robustness can improve performance in medical imaging tasks. Liu et al. (2019)
investigated the robustness of convolutional neural networks (CNNs) for image segmentation
to visually-subtle adversarial perturbations, and showed that in spite of a defense mechanism
in place, the segmentation on unperturbed images was generally of higher quality than that
obtained on perturbed images. Adversarial robustness has mainly been associated with
security, where an adversary is assumed to attack a machine learning system. In Kügler
et al. (2018) and Finlayson et al. (2019), attackers are malicious users that aim to fool
medical systems by applying physical attacks. Cases like these are hardly found in real life,
and if we rely on the genuine assumption that no malicious entities try to mislead diagnoses
or treatments (Finlayson et al., 2019), it is easy to understand why ideas from the robustness
community have found limited application in medical imaging. Although Finlayson et al.
(2019) voiced concerns of insurance fraud, it has been argued that robustness goes beyond
security and has implications in other domains including interpretability of DL models
(Engstrom et al., 2019; Kaur et al., 2019; Santurkar et al., 2019; Tsipras et al., 2019; Fong
and Vedaldi, 2017). In this context, the work from Fong and Vedaldi (2017) aimed to identify
image parts that were responsible and could explain the classifier’s decisions. Uzunova et al.
(2019) used VAE to generate perturbations which were employed to explain medical image
classification tasks. Furthermore, while independent and identically distributed machine
learning focuses on improving the prediction outcome in average cases while neglecting
edge cases, robust machine learning focuses on finding the worst case scenario and edge
cases to potentially patch them. This perspective is very useful in medical imaging analyses
and applications, as the danger for each misprediction can be high and abnormalities can
be edge cases.

2. Materials and Methods

This study aims to enhance the quality of accelerated MRI that are reconstructed with deep
learning approaches. A complete overview of the proposed approach is shown in Fig. 1. In
the interest of accomplishing such task, we adversarially attack a reconstruction network
to identify small (synthetic) features which are difficult for that network to reconstruct.
We refer to them using the acronym ‘FNAF’, which stands for ‘False Negative Adversarial
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Features’. Simultaneously, we apply ideas of robust training to make the reconstruction
network less sensitive to the adversarial features (i.e. FNAF), and reduce their reconstruc-
tion error. Next, we test whether the approach has generalized to real world features by
analyzing reconstructed MRIs from the knee Fast-MRI dataset (Zbontar et al., 2018). To
do so, MR images are fed into a classification network, purposefully trained to establish
whether upon reconstruction, these real small features are still present in the MRI.

2.1 Imaging data

2.1.1 MRI reconstruction dataset

The Fast-MRI dataset for the single-coil reconstruction task was utilized (Zbontar et al.,
2018). This portion of the dataset is comprised of emulated single-coil (ESC) k-space
data, which are combined k-space data derived from multi-coil k-space data to approximate
single-coil acquisitions (Tygert and Zbontar, 2020). ESC uses responses from multiple
coils and linearly combines them in a complex-valued formulation, which is fitted to the
ground-truth root-sum-of-squares reconstruction in the least-squares sense. The dataset
comprises proton-density weighted with and without fat suppression sequences; we refer
interested readers to the original paper for details about the acquisition. We used the
original train/validation data splits which include 973/199 volumes (34,742/7,135 slices)
respectively. Details are summarized in Table 1.

2.1.2 Fast-MRI dataset abnormality annotation

To further assess the generalization ability of the proposed reconstruction approach to real
features, coronal proton density-weighted with fat suppression knee sequences from the
aforementioned dataset were annotated. These include a total of 515 MR exams, 468 and
97 exams from the training and validation sets respectively. All MRI volumes were examined
for cartilage, meniscus, bone marrow lesions (BML), cysts, and based on the WORMS scale
(Peterfy et al., 2004) by the MSK radiologist involved in the study. Bounding boxes were
placed for cartilage and BML in 4 sub-regions of the knee at the tibio-femoral joint; medial
and lateral femur, medial and lateral tibia. Cartilage lesion were defined as partial or full
thickness defects observed in one or more slices extending to include any breadth. Annotated
bone marrow lesions included any increased marrow signal abnormality adjacent to articular

Table 1: Summary of the imaging data used in the experimental study.
Dataset Train Validation Comments

MRI reconstruction 973 (34,742) 199 (7,135)
3D Volumes (2D slices). Single-coil emulated k -space
data, from Zbontar et al. (2018). Details in Sec-
tion 2.1.1.

Abnormality annotation 468 97

Coronal proton density-weighted with fat suppres-
sion volumes, annotated for abnormalities based on
WORMS scale. Details in Section 2.1.2. Annotations
publicly available https://github.com/fcaliva/

fastMRI_BB_abnormalities_annotationhere.

Abnormality classification (32× 32) 103,652 2,552 Image patches extracted from the volumes with
abnormality annotations available. Details in
Section 2.1.3.

Abnormality classification (64× 64) 7,664 2,110
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Figure 3: Depiction of the bounding box-based annotations. Left: Cartilage lesions visible
in the medial tibia and femur. Middle: Cartilage lesion in the lateral femur.
Right: Regional distribution of abnormalities in the training dataset.

cartilage in one or more slices, at least encompassing 5% of the articular marrow regions.
Similar bounding boxes were placed in the two sub-regions of the meniscus: medial and
lateral. Meniscal lesions were defined to include intrasubstance signal abnormality, simple
tear, complex tear or maceration. Given the sparse occurrence of cysts, a single bounding
box label was used to encompass all encountered cystic lesions in any of the sub-regions.
Fig. 3 is exemplary of the performed annotations. Specifically, the MRI on the left-hand
side displays the presence of cartilage lesions in the medial tibial (red) and femoral (purple)
compartments. In the middle, a cartilage lesion in the lateral femur is marked by a golden
color-coded bounding box. On the right-hand side, a map representative of the distribution
location of abnormalities in the training set is shown.

2.1.3 Abnormality presence classification dataset

Performing anomaly classification at the image level can hardly discriminate whether all
clinical abnormalities have correctly been reconstructed. This is especially true when an
image includes more than one abnormality, as per the case in the left image of Fig. 3. A
good way to provide a less coarse analysis is to perform it in a patch-based fashion. This
has the drawback of introducing severe class imbalance; therefore we performed adaptive
patch sampling based on the distribution of abnormality in the training set as shown in
the right of Fig. 3. Two configurations of patch size were explored, 32 × 32 and 64 × 64.
With respect to the 32× 32 patches, these were created by utilizing a sliding window with
stride 2, whereas for the 64 × 64 patches a stride of 8 pixels was adopted. The available
annotations allowed to define whether a patch comprised abnormalities or not.

To further enforce class balance, the number of normal patches was capped to the
number of abnormal patches, by randomly selecting normal patches within the pool of
normal patches. As a result, the two datasets comprised of: 103,652 train/2,552 validation
data points in the 32 × 32 patch dataset, and 7,644 train/2,110 valid data samples in the
64 × 64 patch dataset. Importantly, since we do not have access to patient information in
the Fast-MRI dataset, to prevent any form of data leakage across data splits, we pertained
the original dataset’s training and validation splits, refraining from creating a test split, as
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potential data-leakage could lead to an overoptimistic classification performance. Details
about the dataset are summarized in Table 1.

2.2 False negative adversarial attack on reconstruction networks

Adversarial attacks aim to maximize the loss L of a machine learning model, parameterized
by θ. This can be achieved by changing a perturbation parameter δ within the set S ⊆ Rd
of the allowed perturbation distribution (Madry et al., 2018). Here, S was restricted to be
a set of visible small features in all locations of an inputted MR image. Formally, this is
defined as:

max
δ∈S

L (θ, x+ δ, y) (1)

In principle, L could be any arbitrary loss function. For traditional image reconstruction,
the reconstruction loss is minimized so that all the features including the introduced pertur-
bation (i.e. small features) are reconstructed. Conversely, the attacker aims to maximize
Eq. 1 and identify a perturbation, which the network is not capable of reconstructing.

Next, let δ be an under-sampled perturbation which is added to an under-sampled image
and δ′ the respective fully-sampled perturbation, the objective function becomes:

max
δ∈S

L (θ, x+ δ, y + δ′) (2)

with:
δ = U(δ′) (3)

U can be any under-sampling function, which is comprised of an indicator function M
that acts as a mask in the k-space domain, and an operator that allows for a conversion
from image to k-space and vice-versa such as the Fast Fourier Transform F and its inverse
F−1. The under-sampling as well as the k-space mask M functions are the same as in the
implementations provided by Zbontar et al. (2018).

U(y) = F−1(M(F(y))) (4)

As we synthetically construct the small added features, we can measure the loss value
within the area where the introduced features are located to assess whether they have
been reconstructed. To do so, a mask was placed over the reconstructed image and the
perturbed target image, so that only the area of the small feature was highlighted. The
area was relaxed to also include a small region at a distance d from the feature border.
The motivation for the mask accounting for boundaries is; if only the loss of the FNAF’s
foreground was measured, it might not capture cases where the FNAF had blended in with
the background. Therefore, the loss was computed in a 5 pixels distance range from the
boundary of the FNAF. The loss is defined as

L = α · L(x, y) + β ·NMSE(T (x), T (y)) (5)

where x and y are the under-sampled and the fully-sampled (i.e. target) reconstructed
MRIs, respectively. L is the original whole-image objective function reported by image
reconstruction methods in their original papers, such as L1 loss for the U-Net in Zbontar
et al. (2018) and SSIM loss for I-RIM in Putzky et al. (2019). T is an indicator function

9
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which masks over the FNAF in the fully-sampled and under-sampled reconstructed images.
Weights α and β are hyper-parameters, which were set to 1 and 10 during adversarial
training (details in Section 2.4). This allows one to better preserve both the image quality
and robustness of FNAF. During the evaluation of the attack, α and β were set to 0 and 1
respectively, to guarantee that the loss value was representative of the FNAF reconstruction.
The loss can be maximized by either random search (RS) or finite-difference approximation
gradient ascent (FD).

With random search, random shapes of features δ are placed at random locations in the
image, and the δ which maximizes the loss in Eq. 2 is identified. As demonstrated in Bergstra
and Bengio (2012) and Engstrom et al. (2017), random search is an effective optimization
technique. The location of the δ feature is a crucial factor in finding FNAF but the (c, r)
coordinates of δ are non-differentiable. This limitation can be addressed by employing
the finite central difference reported in Eq. 6, with step size h, which makes it possible
to approximate the partial derivatives for each location parameter (p) and optimize the
low-dimensional non-differentiable parameters to update p and maximize Eq. 2 via gradient
ascent.

∂L

∂p
=
L
(
p+ h

2

)
− L

(
p− h

2

)
h

(6)

2.3 Under-sampling information preservation verification

A benefit of having a synthetic feature generator is that one can produce unlimited features,
but also quantify the amount of preserved information after k-space under-sampling. To
guarantee that the information of δ was preserved irrespective of under-sampling in the
k-space, the following condition needs to be satisfied:

D(x+ δ, x) > ε (7)

where D is a distance function, and ε is a noise error tolerance threshold; x+ δ and x obey:

U(y + δ′) = U(y) + U(δ′) = x+ δ (8)

as U is linear and closed under addition. MSE is used for D.

2.4 FNAF implementation details

FNAF were constrained to include 10 connected pixels for the evaluation of the attacks.
Attack masks were placed within the center of a 120×120 crop of the image, to ensure
that the added features were small enough and placed in reasonable locations. For random
search, 11 randomly-shaped FNAF were generated at random locations for each sample in
the validation set, and the highest adversarial loss were recorded.

2.5 Robust training with False Negative Adversarial Features

Our attack formulation, which is expressed in Eq. 5, allows the reconstruction models to
simultaneously undergo standard and adversarial training. This allows one to do FNAF-
robust training on a pre-trained model and in turn, speed up convergence. In contrast,
small perturbations-based adversarial training approaches would require training only on
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robust features (Madry et al., 2018). To accelerate training, we adopted ideas from Shafahi
et al. (2019b). Briefly, for FNAF-robust training, we used a training set which included
original and adversarial examples. The inner maximization can be performed by either
random search or finite-difference approximation gradient ascent, as described above. In
our experiments, we opted for random search as in our previous study (Cheng et al., 2020),
it proved to be a more effective form of attack. RS reduced the implementation to be a
data augmentation approach.

In Eq. 5, β was set to 10 to encourage the reconstruction of the introduced features. To
prevent from overfitting on the FNAF attack successes, the selection of the model (to be
attacked) was done by choosing the model which showed the best reconstruction loss on the
validation set, while the adversarial component of the loss was ignored. The models trained
in this experiment are named ‘FNAF U-Net’ and ‘FNAF I-RIM’.

During training of FNAF I-RIM, FNAF attacks were constrained to include 10 to 1000
uniformly sampled connected pixels. This was to relax the constraint, as advised in Cheng
et al. (2020). We intended to do the same for FNAF U-Net but the training could not reach
convergence, so during training of FNAF U-Net, FNAF was restricted to 10 connected
pixels.

2.6 Training with real abnormalities

Using the annotations described in Section 2.1.2, we implemented robust training on the
reconstruction models using real abnormalities. Same as in the experiment described in
Section 2.5, Eq. 5 was optimized, by altering the term T which here represents annotations
of bounding box masks. This experiment is an upper-bound for FNAF robust training. The
models trained in this experiment are named ‘B-Box U-Net’ and ‘B-Box I-RIM’.

2.7 Evaluation of generalization to real-world abnormalities

We aimed to answer the following question: How well does a robust training approach-
which encourages the reconstruction of FNAF- improve the network’s performance on re-
constructing real (rare or common) small features?

An MSK radiologist inspected the reconstructed MRI slices from the validation set which
include abnormalities, as per the annotations described in Section 2.1.2 and observed only
slight improvements in the reconstruction of the abnormalities, which can be attributable
to the robust training. An example is pictured in Fig. 4 (more details in Section 3.3). We
understand that this investigative approach could be biased by human cautiousness, and
it is also practically impossible to confine the radiologist’s analysis to the regions which
include the abnormalities. Lastly, the opinion of a single radiologist is not enough to fairly
investigate the reconstruction due to individual bias, so a formal analysis with multiple
readers is needed to confirm our preliminary observations. Therefore, we conducted a
quantitative analysis of the reconstruction by automating abnormality detection in the
reconstructed images.

2.7.1 Abnormality presence classification

Abnormalities present in the Fast-MRI dataset were manually annotated by means of bound-
ing boxes, as described in Section 2.1.2. The benefits of producing such annotations are
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Figure 4: Example a reconstructed 4× accelerated MRI. The abnormality within the bound-
ing box in (A) was not perfectly reconstructed by the baseline U-Net (B), and
detected as a false negative feature by the abnormality classifier. The abnormality
was better reconstructed after robust training with FNAF (C) and real abnor-
malities (E). Reconstruction differences between the images reconstructed with
the baseline U-Net and the two robust trained networks are shown in (D) and
(F). The arrows point to regions where signal was better preserved upon recon-
struction, which in turn might have helped the abnormality classifier. Baseline
U-Net trained with settings reported in Zbontar et al. (2018).

two-fold. Bounding boxes allow for restricting the region in which the reconstruction error
can be calculated. This overcomes the limitation of global evaluation metrics which merely
provide an ‘average’ evaluation of the reconstruction quality, which in the first place, might
not be representative of the reconstruction accuracy in the small regions that contain ab-
normalities. Furthermore, bounding boxes allow for implementing an unbiased tool (e.g. a
classifier) capable of assessing the presence or absence of the abnormalities in the recon-
structed image, making it possible to fairly compare multiple reconstruction approaches.

2.8 Experimental setup

We conducted our experiments with single-coil setting, including 4× and 8× acceleration
factors (Zbontar et al., 2018). We evaluated our method with two deep learning based
reconstruction methods; a modified U-Net (Zbontar et al., 2018)- here considered as baseline
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for MRI reconstruction- and invertible Recurrent Inference Machines (I-RIM) (Putzky and
Welling, 2019), which was the winner model of the single-coil knee Fast-MRI challenge. For
U-Net, we followed the training procedures described in Zbontar et al. (2018). For I-RIM,
we followed the training procedures described in Putzky et al. (2019) and used the official
released pre-trained model.

2.8.1 Attack evaluation metrics

The average attack loss for the validation set and the attack hit rate were computed. The
average attack loss is defined in Eq. 5. An attack is considered a hit when the loss is
higher than a threshold value γ, which was empirically set to 0.25, as we observed the
FNAF disappeared when the loss value was greater than 0.25. The hit rate was set to be
conservatively low. To achieve this effect, γ was set at a high value, and as a consequence
there may be cases in which, despite L ≤ γ, the FNAF were lost. We speculate that the
actual hit rate is likely to be higher than the value reported in the current work.

2.8.2 Abnormality classification

Squeezenet (Iandola et al., 2016) pretrained on the Imagenet dataset was the network of
choice. The selection was driven by two factors: while providing excellent classification
performance, Squeezenet has a small footprint by design and is fully convolutional. This
means that it can accept, as its input, images of any size, and without requiring major
architectural modifications. Furthermore, the limited memory footprint and flexibility to
inputs of various dimensions are particularly appealing for us, for the prospective future
combination of image reconstruction and abnormality detection in an end-to-end framework.
Two fine-tuning strategies were tested; in one, all layers pre-trained on Imagenet with
exception for the last classification convolutional layer were frozen. The last- namely the
classification layer- was replaced by two 1 × 1 convolutional layers; the first produced 512
feature channels, the second provided two feature channels, which were activated with
a ReLU activation function and fed into a Global Average Pooling to provide the logits
subsequently inputted to a softmax activation function. The last is a function that converts
an N -dimensional vector of arbitrary real values to a N -dimensional vector of real values
in the range [0, 1] summed to 1. In this case, N = 2 and the obtained values can be
interpreted as probability values that a particular image includes an abnormality or not.
In the second fine-tuning strategy, all the weights in the modified version of the Squeezenet
were fine-tuned. Ultimately, for completeness we also trained a Squeezenet from scratch.

During the learning phase, classification networks were trained and validated on the
patches extracted from the original Fast-MRI dataset, as described in Section 2.1.3. Trained
models were inferred on the same patches, this time extracted from the original Fast-MRI
images as well as from images reconstructed with U-Net and I-RIM, and the versions robust
trained with FNAF (FNAF U-Net and FNAF I-RIM) and with real abnormalities (B-Box
U-Net and B-Box I-RIM). The performance on the patches extracted from the fully sampled
images is an upper bound for abnormality presence classification performance.

For fine tuning, a binary cross-entropy loss was minimized, using stochastic gradient
descent as the optimizer with learning rate as 1 × 10−3 (0.1 decay rate), weight decay
5×10−4 and 128 samples per batch. Early stopping was implemented when no classification
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improvement in the validation set were observed for 60 epochs, with the maximum number
of epochs set to 100.

3. Results and Discussion

The results of the attack are reported in Table 2 and confirm that hypothesis 2 is true in
many cases; small features are not lost during under-sampling. The high success rate of
the random search method for both models showed that it is fairly easy to find a FNAF
in the search space that was heuristically defined. Although I-RIM was more resilient to
the attacks as opposed to the baseline U-Net, the attack rate was still fairly high. This is
concerning, yet expected since deep learning methods are not explicitly optimized for such
objective, so these FNAF are at the tail-end of the distribution or even out-of-distribution
with respect to the training distribution. Fortunately, we can modify the objective as
specified in Section 2.5 to produce a FNAF-robust model which appears to be resilient to
the attacks. Furthermore, this shows a minimal effect in the standard reconstruction quality,
which is reported in Table 3. B-BOX training seems to worsen the network’s vulnerability
to FNAF attacks which could mean the FNAF constructed might not be representative of
the real abnormalities.

3.1 Under-sampling information preservation verification

To investigate whether small features were preserved upon under-sampling (i.e. our second
hypothesis), the acceptance rate of the adversarial examples was measured and a high
acceptance rate (>99%) was seen across all the tested settings. This proves that in most
cases, the small feature’s information was not completely lost through under-sampling.
Recall the information preservation (IP) loss, which was introduced in Sec. 2.3, is a MSE
loss. When compared to the FNAF loss, the IP loss showed a small negative correlation (r =
−0.14). This supports the hypothesis that the availability of richer information weakens
the attacks. Nevertheless, such negative correlation is weak, indicating that there is not
a strong association. Therefore, the preservation of information alone cannot predict the
FNAF-robustness of the model. Thus the loss of information due to under-sampling is a
valid but insufficient explanation for the existence of FNAF.

Table 2: FNAF attack evaluations, when the loss was maximized using random search.
Metrics computed on (A) 4× and (B) 8× retrospectively undersampled MRIs.

AF=4× Attack Rate (%) NMSE AF=8× Attack Rate (%) NMSE

U-Net 88.89 0.5798 U-Net 92.96 0.7928
FNAF U-Net 3.406 0.0422 FNAF U-Net 13.38 0.0781
B-Box U-Net 88.09 0.5793 B-Box U-Net 92.98 1.072

I-RIM 10.62 0.1948 I-RIM 91.00 0.3305
FNAF I-RIM 0.014 0.0072 FNAF I-RIM 2.859 0.0245
B-Box I-RIM 17.39 0.2056 B-Box I-RIM 92.81 0.3489

(A) (B)
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Table 3: Image reconstruction performance comparison. Evaluation conducted using struc-
tural similarity index measure (SSIM), peak signal-to-noise-ration (PSNR) and
normalized mean-squared error (NMSE). Metrics computed on the (A) 4× and
(B) 8× retrospectively undersampled MRIs from the Fast-MRI knee validation
set.

AF=4×
Method NMSE PSNR SSIM

U-Net 0.0345 ± 0.050 31.85 ± 6.53 0.7213 ± 0.2614
FNAF U-Net 0.0349 ± 0.050 31.78 ± 6.45 0.7192 ± 0.2621
B-Box U-Net 0.0351 ± 0.050 31.76 ± 6.46 0.7181 ± 0.2623

I-RIM 0.0341 ± 0.058 32.45 ± 8.08 0.7501 ± 0.2539
FNAF I-RIM 0.0338 ± 0.057 32.48 ± 8.01 0.7496 ± 0.2541
B-Box I-RIM 0.0331 ± 0.056 32.57 ± 8.04 0.7493 ± 0.2548

(A)

AF=8×
Method NMSE PSNR SSIM

U-Net 0.0493 ± 0.057 29.85 ± 5.22 0.6548 ± 0.2935
FNAF U-Net 0.0495 ± 0.057 29.84 ± 5.21 0.6539 ± 0.2931
BBOX U-Net 0.0496 ± 0.057 29.81 ± 5.19 0.6520 ± 0.2935

I-RIM 0.0444 ± 0.068 30.95 ± 7.11 0.6916 ± 0.2933
FNAF I-RIM 0.0439 ± 0.0672 30.98 ± 7.03 0.6909 ± 0.2933
B-Box I-RIM 0.0430 ± 0.066 31.07 ± 7.06 0.6904 ± 0.2944

(B)

3.2 Real-world abnormality reconstruction: direct pixel evaluation

To measure how well the annotated abnormalities were reconstructed, the bounding box re-
gions in the reconstructed images were compared with those in the respective fully-sampled
MRI from the Fast-MRI dataset. Normalized mean-squared error (NMSE) was the adopted
metric, and was preferred over other metrics such as structural similarity index measure
(SSIM) due to the variety of bounding box sizes (in number of pixels) that characterized
the abnormality regions. Table 4 shows that for 8× acceleration, the FNAF U-Net out-
performed the U-Net baseline for the majority of the classes. This holds true for the total
average value. Nevertheless, FNAF U-Net showed no improvements in the 4× setting.
FNAF I-RIM showed improvements over I-RIM in the 4× setting but not the 8× setting.
This shows that FNAF training may provide better abnormality reconstruction, but not
consistently, as FNAF might still be too different from the real-world abnormalities. B-
BOX training showed improvements over FNAF-robust training and the baselines in all but
the U-Net 4× undersampling. This may be motivated by imperfect training and lack of
abnormalities in the training set. Results were tested for statistical significance by means
of a two-sided Wilcoxon rank-sum test (p ≤ 0.05). As reported in Table 4, the use of
I-RIM with robust training focused on real abnormalities (i.e. B-Box I-RIM), significantly
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Table 4: Image reconstruction normalized mean-squared error computed for each recon-
struction approach within the abnormality regions. The metric is reported per
compartment and was computed on the (A) 4× and (B) 8× retrospectively under-
sampled MRIs from the Fast-MRI knee validation set. ‘All’ refers to the average
NMSE on all the bounding boxes. Bold values represent statistically significant
difference when a model’s performance was compared against the relative baseline
reconstruction method (e.g. (FNAF U-Net vs U-Net), (FNAF I-RIM vs I-RIM)).
A two-sided Wilcoxon rank-sum test was conducted using p ≤ α, with α set to
0.05 as the significance level. Per-abnormality summaries of the NMSE computed
in all the samples are reported in Fig. 8- 9. Column 2- titled N- reports the count
of occurrences of each abnormality, in the validation-set.

AF=4×
Compartment N U-Net FNAF U-Net B-Box U-Net I-RIM FNAF I-RIM B-Box I-RIM

Cart Med Fem 19 0.04720 0.04771 0.04695 0.04003 0.03989 0.03685
Cart Lat Fem 20 0.05818 0.06046 0.06353 0.04588 0.04574 0.04365
Cart Med Tib 5 0.08705 0.08843 0.09137 0.09260 0.08821 0.08289
Cart Lat Tib 7 0.06148 0.06145 0.06959 0.05064 0.05035 0.04595

BML Med Fem 24 0.04153 0.04142 0.04298 0.03880 0.03790 0.03440
BML Lat Fem 29 0.05803 0.05847 0.06009 0.05245 0.05099 0.04690
BML Med Tib 10 0.06031 0.06091 0.06315 0.05905 0.05744 0.05201
BML Lat Tib 16 0.04905 0.04920 0.04730 0.04777 0.04661 0.04389

Med Men 11 0.04902 0.04964 0.05014 0.04139 0.04151 0.0392
Lat Men 11 0.04314 0.04421 0.04838 0.03321 0.03335 0.03158

Cyst 5 0.03557 0.03585 0.03665 0.03494 0.03496 0.02945

All 0.05213 0.05277 0.05437 0.04649 0.04569 0.04232

(A)

AF=8×
Compartment N U-Net FNAF U-Net B-Box U-Net I-RIM FNAF I-RIM B-Box I-RIM

Cart Med Fem 19 0.08435 0.08399 0.07794 0.06181 0.06418 0.05611
Cart Lat Fem 20 0.08809 0.08767 0.08742 0.06375 0.06402 0.06216
Cart Med Tib 5 0.15370 0.15350 0.13490 0.13850 0.13500 0.11910
Cart Lat Tib 7 0.11830 0.11790 0.13470 0.09268 0.09446 0.08259

BML Med Fem 24 0.08110 0.08178 0.07576 0.06020 0.06065 0.05374
BML Lat Fem 29 0.10280 0.10050 0.09199 0.08084 0.08059 0.06936
BML Med Tib 10 0.10990 0.10610 0.10840 0.08304 0.08070 0.07396
BML Lat Tib 16 0.07505 0.073440 0.07519 0.06799 0.06768 0.06196

Med Men 11 0.0828 0.08043 0.08265 0.06721 0.06654 0.06524
Lat Men 11 0.09097 0.08793 0.09225 0.05334 0.05439 0.05393

Cyst 5 0.07787 0.07586 0.07092 0.05993 0.06199 0.04969

All 0.09228 0.091 0.08852 0.07085 0.07108 0.06417

(B)

improved the reconstruction quality of all the lesions (bold values), but those located at the
medial tibial cartilage and cyst (at 4× AF), lateral femoral cartilage, medial tibial cartilage,
menisci and cyst (at 8× AF) when compared against the baseline U-Net and I-RIM based
reconstructions. A complete summary of NMSE computed on every abnormality with the
various reconstruction approaches is reported in Fig. 9 included in the Appendix.
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Figure 5: Example of a reconstructed 4× accelerated MRI. The abnormality within the
bounding box in (A) was not perfectly reconstructed by the baseline I-RIM (B),
and detected as a false negative feature by the abnormality classifier. The abnor-
mality was better reconstructed after robust training with FNAF (C) and real
abnormalities (E). Reconstruction differences between the images reconstructed
with the baseline I-RIM and the two robust trained networks are shown in (D)
and (F). The arrows point to regions where signal was better preserved upon re-
construction, which in turn might have helped the abnormality classifier. Baseline
I-RIM is the trained model released by Putzky et al. (2019).

3.3 Measuring the presence of abnormalities in the reconstruction

With respect to the classification of abnormalities within the patches that were extracted
from the reconstructed MRIs, a Squeezenet where only the final classification layer was fine-
tuned showed superior performance compared to the other two training settings, namely
fine-tuning of all layers and training from scratch. The results for the better performing
classification model are reported in Table 5 and Table 6 where it is shown that the FNAF
robust training approach for U-Net contributed to the enhancement in the reconstruction
quality of clinically relevant features. This is represented by a reduction in the number of
false negative features in the classification of real abnormalities. However, the classifica-
tions obtained on the U-Net and the robust trained versions disagree to the same amount
(McNemar’s test p > 0.05). We inspected the prediction probabilities (normal/abnormal
patch) on false negative cases in images reconstructed with U-Net and the proposed ap-
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Table 5: Abnormality classification performance on patches of size 32 × 32. Metrics com-
puted on fully-sampled images, (A) 4× and (B) 8× undersampled images, which
were reconstructed using the various methods studied in this paper. The reported
metrics are Sensitivity (Sn), Specificity (Sp), F1 score, Kappa and Area Under the
ROC curve (AUROC).

AF=4×
Input Sn Sp F1 score Kappa AUROC

Fully-sampled 86.12 65.90 78.25 52.04 86.24

U-Net 89.74 62.93 79.17 52.69 86.24
FNAF U-Net 90.23 63.51 79.64 53.76 86.37
B-Box U-Net 91.13 62.11 79.63 53.27 86.71

I-RIM 94.50 52.31 78.09 46.84 85.70
FNAF I-RIM 94.09 54.20 78.49 48.32 85.79
B-Box I-RIM 91.38 55.77 77.62 47.17 84.89

(A)

AF=8×
Input Sn Sp F1 score Kappa AUROC

Fully-sampled 86.12 65.90 78.25 52.04 86.24

U-Net 85.30 68.95 78.89 54.26 86.04
FNAF U-Net 85.71 69.19 79.21 54.92 86.28
B-Box U-Net 87.11 68.78 79.83 55.91 87.04

I-RIM 92.28 55.93 78.14 48.24 85.43
FNAF I-RIM 91.71 56.67 78.08 48.41 85.34
B-Box I-RIM 87.03 59.06 76.40 46.11 84.20

(B)

proach, and interestingly observed that for the network, which consumed 32×32 patches,
in 61% of the cases the classifier’s predictions were less confident when the reconstruction
was performed using FNAF robust training as opposed to the baseline U-Net. We observed
a similar behavior when analyzing the classification on patches from images reconstructed
using I-RIM and FNAF I-RIM (54% of the cases). Our interpretation for such decrease
in classification confidence is that FNAF robust training proved an added value to the re-
construction. Furthermore, we suggest that this decrease in confidence is more prevalent
on smaller patches as opposed to the 64×64 patches, because the small abnormalities are
mainly local features, which when analyzed on larger patches, they might be smoothed out.
With respect to the experiment where robust training was done using real abnormalities,
we observed higher sensitivity with B-Box U-Net, in contrast to B-Box I-RIM. A possible
explanation of such result is that when robust training is implemented on synthetic features,
these can inherently be unlimited as opposed to the real abnormalities, and this might cause
slight overfitting on the real features. For this reason, a network with a smaller capacity
like U-Net might better leverage robust training using real abnormalities.
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Table 6: Abnormality classification performance on patches of size 64 × 64. Metrics com-
puted on fully-sampled images, (A) 4× and (B) 8× undersampled images, which
were reconstructed using the various methods studied in this paper.

AF=4×
Input Sn Sp F1 score Kappa AUROC

Fully-sampled 78.43 80.47 79.31 58.89 87.93

U-Net 69.87 83.12 74.90 52.62 86.51
FNAF U-Net 70.65 83.32 75.49 53.93 86.68
B-Box U-Net 73.08 82.73 76.85 55.78 87.00

I-RIM 81.54 76.45 79.60 58.00 86.58
FNAF I-RIM 81.44 76.45 79.54 57.90 86.63
B-Box I-RIM 78.91 78.31 78.61 57.22 86.49

(A)

AF=8×
Input Sn Sp F1 score Kappa AUROC

Fully-sampled 78.43 80.47 79.31 58.89 87.93

U-Net 60.06 88.62 70.11 48.61 86.10
FNAF U-Net 62.00 88.32 71.44 50.26 86.36
B-Box U-Net 67.93 84.79 74.24 52.68 86.85

I-RIM 75.61 78.61 76.84 54.21 85.21
FNAF I-RIM 74.44 78.70 76.14 53.13 85.31
B-Box I-RIM 72.01 81.45 75.65 53.44 85.27

(B)

It is worth mentioning that a drop in classification performance was expected when the
input image was DL reconstructed. However, we assumed that such drop in performance
would mainly be associated to a covariate shift which comes from subtle changes in the pixel
intensity values caused by the image reconstruction. With that in mind, we assumed that
the network with the smallest performance drop (meaning that more diagnostic features
are still identifiable) was the network that more reliably reconstructed fine details in the
MRI. This is hard to prove, mainly because errors propagate from the under-sampling and
zero-filling in k-space to the reconstruction error, up to the actual classification error per
se, which might in turn not exclusively depend on errors in the reconstruction.

Overall, we suggest that further reconstruction improvements could be obtained by
reducing the semantic difference between FNAF and real-world abnormalities, although it
certainly requires further investigation. Ideally, we want to construct the space of FNAF
to be representative of not only the size but also the semantics of real-world abnormalities.
Possible direction for improving FNAF and making them more realistic include: i) relaxing
the pixel constraint more so that the FNAF space can include real-world abnormalities;
ii) modeling the abnormality features by introducing domain knowledge. In a recently
published work, Chen et al. (2020) suggest to introduce domain knowledge in adversarial
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attacks to improve the reconstruction performance and boost performance in downstream
tasks.

Examples of the effect of robust training using FNAF as well as the real abnormalities on
U-Net and I-RIM reconstruction networks are displayed in Fig. 4 and Fig. 5 respectively. In
Fig. 4, a coronal section of knee MR (fully-sampled MRI) from the validation set is depicted
in (A). This is an MRI from the Fast-MRI dataset which was utilized as image reconstruction
ground truth, as well as an input in the validation of the abnormality classification network.
In (A), the bounding box highlights the presence of a bone marrow lesion at the lateral edge
of the femur, based on the radiologist’s manual annotation. From an accurate analysis, it
can be observed that the bounding box includes a portion of the adjacent joint fluid with
high signal to test for confounding. In the reported experiment, prior to reconstruction,
MRIs were undersampled at a 4× AF. In (B), the reconstruction result by using a baseline
U-Net is displayed. This shows that U-Net recreated parts of the BML features in the
corresponding region of the femur. Despite that, the lesion was not detected by our lesion
classification model, making this a false negative case. In (C), the resulting reconstructed
image with the proposed robust training approach appears to have better reconstructed
BML features in the corresponding region and, in turn, it is identified by the lesion detection
model, correctly making it a true positive case. In (D), a difference map between U-Net
and FNAF reconstructions is shown. Radiologist’s opinion propounds that FNAF robust
training allowed for a finer reconstruction of particular features, which better mimic the
ground truth and is crucial for a precise clinical interpretation. In (E), the reconstruction
is obtained post-robust training with real abnormalities (i.e. B-Box U-Net reconstruction);
the associated difference map is shown in (F). It is clear that when using real features, the
network proved more sensitive to finer anatomical structures. Similar consideration can be
done about the reconstruction obtained with I-RIM and robust trained versions, as shown
in Fig. 5. The difference map in Fig. 5-(F), between an image reconstructed with I-RIM
and B-Box I-RIM further credits the hypothesis that more realistic FNAF would enhance
the reconstruction quality as demonstrated by the more prominent difference observed in
bone marrow lesion. This would allow radiologists to make accurate diagnoses and avoid
missing out on small details, often of utmost importance for image interpretation.

To summarize, our experiments showed that by training on our imperfect FNAF, one can
force convolution filters to be more sensitive to small features, and this would be especially
powerful if FNAF were more realistic. This was supported by the significant reconstruc-
tion improvements which were observed when robust training was implemented using the
abnormality bounding boxes. We speculate that this is indicative of a promising direction
to move forward to improve clinical robustness.

4. Limitations

We showed that the introduction of small abnormalities has potential to improve MRI recon-
struction using DL techniques; however, this was only shown on a single-coil reconstruction
task, based on emulated single-coil k-space data. A multi-channel reconstruction approach
would better suit clinical applications. In practice, the current formulation involved the
introduction of FNAF in the image space, which forced us to treat the reconstruction as
a single-coil problem. Further studies are needed to experimentally prove the effect of this
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method on high resolution 3D sequences, different anatomies, and scanners from multiple
vendors. It will also be necessary to introduce FNAF directly in k-space, to make it suitable
to multi-channel reconstruction. The current formulation of the method requires knowledge
of the forward function of MRI reconstruction, which is not explicitly available in the single-
coil formulation. Further efforts to simulate the forward function or other approaches are
required. Robust adversarial training is only empirically effective, which might explain the
limited improvements over the baseline for real-world abnormalities. Theoretically robust
methods might help resolve this issue. We believe that the evaluation metrics for abnor-
mality reconstruction are still imperfect when compared to radiologist evaluations. Better
metrics that capture clinical relevance are certainly needed. Ultimately, regarding the ab-
normality classification framework, we assumed that a drop in performance was associated
to a covariate shift resulting from different image reconstruction techniques; it will be in-
teresting to analyze whether adversarial domain adaptation techniques would mitigate the
drop in performance we observed.

5. Conclusions

The connection between FNAF to real-world abnormalities is analogous to the connection
between lp-bounded adversarial perturbations and real-world natural images. In the natu-
ral images sampled by non-adversaries, lp-bounded perturbations most likely do not exist.
But their existence in the pixel space goes beyond security, as they reveal a fundamental
difference between deep learning and human vision (Ilyas et al., 2019). Lp-bounded per-
turbations violate the human prior: humans see perturbed and original images the same.
FNAF violate the reconstruction prior: an algorithm should recover (although it may be
impossible) all features. We relaxed this prior to only small features, which often are the
most clinically relevant. Therefore, the failure of deep learning reconstruction models to
reconstruct FNAF is important even if FNAF might not be representative of the real-world
abnormalities. Lp-bounded perturbations inspired works that generate more realistic at-
tacks, and we hope to bring the same interest in the domain of MRI reconstruction.

This work expanded Cheng et al. (2020) to show the possibility of translating adversarial
robust training with FNAF to real world abnormalities. For this, an MSK radiologist
annotated the Fast-MRI dataset by placing bounding boxes on top of abnormalities observed
in the menisci, cartilage, and bone in knee MRIs. Subsequently, a fully convolutional neural
network was employed to assess whether the abnormalities had been reconstructed by deep
learning reconstruction methods. This was addressed as a patch-based image classification
problem, and demonstrated that our robust training approach contributes to a reduction in
the number of false negative features.

We investigated two hypotheses for the false negative problem in deep-learning-based
MRI reconstruction. By developing the FNAF adversarial robustness framework, we show
that this problem is difficult, but not impossible. Within this framework, there is poten-
tial to bring the extensive theoretical and empirical ideas from the adversarial robustness
community, especially in the area of provable defenses (Wong and Kolter, 2018; Mirman
et al., 2018; Raghunathan et al., 2018; Balunovic and Vechev, 2020) to tackle the problem.
We suggest that our work gives further credit for the necessity of new loss functions or
metrics to be adopted in image reconstruction, which would be more aware of finer details,
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as per the clinically relevant small features. Furthermore, we hope this will be a starting
point for more research in the field, so that a more realistic search space for the FNAF
could be identified. This would certainly enhance the generalization capabilities of FNAF
to real-world abnormalities. We made the bounding box annotations publicly available
at https://github.com/fcaliva/fastMRI_BB_abnormalities_annotation so that they
can serve as a validation set for future bodies of work.
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2018. PMLR. URL http://proceedings.mlr.press/v80/athalye18b.html.

Mislav Balunovic and Martin Vechev. Adversarial training and provable defenses: Bridging
the gap. In International Conference on Learning Representations, 2020. URL https:

//openreview.net/forum?id=SJxSDxrKDr.

22

https://github.com/fcaliva/fastMRI_BB_abnormalities_annotation
https://github.com/fabio-deep/Distributed-Pytorch-Boilerplate
https://github.com/fabio-deep/Distributed-Pytorch-Boilerplate
http://proceedings.mlr.press/v80/athalye18b.html
https://openreview.net/forum?id=SJxSDxrKDr
https://openreview.net/forum?id=SJxSDxrKDr


Adversarial Robust Training in MRI Reconstruction

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J.
Mach. Learn. Res., 13:281–305, 2012. URL http://dblp.uni-trier.de/db/journals/

jmlr/jmlr13.html#BergstraB12.
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Appendix A

Correlation Analysis

A correlation analysis was conducted to investigate the effect of the abnormality size on the
reconstruction quality. The abnormality size was measured by counting the number of pixels
that abnormalities occupy. Fig. 6 shows that for the 8× acceleration, the improvement of
FNAF U-Net over the baseline increases as the size of bounding boxes decreases. This
preliminarily validates that constraining FNAF’s size during training leads to a better
reconstruction of small abnormalities. Nevertheless, both methods performed comparably
in the 4× setting. In Fig. 6, the reconstruction performed with I-RIM showed no correlation
with the abnormality size, arguably because relaxed constraints were used, when formulating
the FNAF for I-RIM. B-BOX robust training showed the opposite correlation, which might
be due to the presence of fewer abnormalities in the training set, some of which are larger
than FNAF. Fig. 7 shows that the reconstruction quality increases (i.e. the loss decreases)
as the size of abnormal region increases for U-Net but not I-RIM. This could demonstrate
that I-RIM can reconstruct smaller abnormalities better than U-Net.

Abnormality reconstruction analysis

The quality of abnormality reconstruction was assessed in terms of normalized mean-squared
error. Fig. 8 depicts box-plots which summarize the reconstruction error in each manually
annotated abnormality region. The metrics are reported per abnormality and organized per
reconstruction approach. This is complementary to the results reported in Table 4. While
in Fig. 8, the MRI data was previous undersampled with an 4-fold acceleration factor, in
Fig. 9 the undersampling factor was 8×.
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Figure 6: Correlation analysis between NMSE reconstruction improvements and the size of
abnormalities (measured in terms number of occupied pixels)- when implementing
robust training with FNAF or real abnormalities over the baseline models. Top:
FNAF U-Net and B-Box U-Net improvements over the baseline U-Net. Bottom:
FNAF I-RIM and B-Box I-RIM improvements over the baseline I-RIM. Input
MRIs undersampled with a 4× acceleration factor (Column 1 and 2) and a 8×
acceleration factor (Column 3 and 4).
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Figure 7: Correlation analysis between reconstruction NMSE and the size of abnormalities
(measured in terms number of occupied pixels). Row 1 and 2: baseline U-Net and
the robust trained versions with FNAF (FNAF U-Net) and real abnormalities (B-
Box U-Net). Row 3 and 4: baseline I-RIM and the robust trained versions with
FNAF (FNAF I-RIM) and real abnormalities (B-Box I-RIM). First and Third
row: 4× undersampling factor. Second and Last row: 8× undersampling factor.
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Figure 8: Abnormality reconstruction performance summary reported in terms of normal-
ized mean-squared error. The metric was computed within the manually an-
notated abnormality bounding-box regions. Prior to reconstruction, MRIs were
undersampled with a 4× AF factor.
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Figure 9: Abnormality reconstruction performance summary reported in terms of normal-
ized mean-squared error. The metric was computed within the manually an-
notated abnormality bounding-box regions. Prior to reconstruction, MRIs were
undersampled with a 8× AF factor.
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